5 research outputs found

    A Bacteriophage-Acquired O-Antigen Polymerase (Wzy<sub>β</sub>) from <i>P. aeruginosa </i>Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzy<sub>α</sub>

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a seroconverting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3’ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphate activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272 and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion

    Five new genes are important for common polysaccharide antigen biosynthesis in <em>Pseudomonas aeruginosa</em>

    Get PDF
    ABSTRACT Common polysaccharide antigen (CPA) is a conserved cell surface polysaccharide produced by Pseudomonas aeruginosa. It contains a rhamnan homopolymer and is one of the two forms of O polysaccharide attached to P. aeruginosa lipopolysaccharide (LPS). Our laboratory has previously characterized an eight-gene cluster (pa5447-pa5454 in P. aeruginosa PAO1) required for biosynthesis of CPA. Here we demonstrate that an adjacent five-gene cluster pa5455-pa5459 is also involved. Using reverse transcriptase PCR (RT-PCR), we showed that the original eight-gene cluster and the new five-gene cluster are both organized as operons. We have analyzed the LPS phenotypes of in-frame deletion mutants made in each of the five genes, and the results verified that these five genes are indeed required for CPA biosynthesis, extending the CPA biosynthesis locus to contain 13 contiguous genes. By performing overexpression experiments of different sets of these biosynthesis genes, we were able to obtain information about their possible functions in CPA biosynthesis. IMPORTANCE Lipopolysaccharide (LPS) is an important cell surface structure of Gram-negative bacteria. The human opportunistic pathogen Pseudomonas aeruginosa simultaneously produces an O-antigen-specific (OSA) form and a common polysaccharide antigen (CPA) form of LPS. CPA, the focus of this study, is composed of α-1-2, α1-3-linked d-rhamnose sugars and has been shown to be important for attachment of the bacteria to human airway epithelial cells. Genome sequencing of this species revealed a new five-gene cluster that we predicted to be involved in CPA biosynthesis and modification. In this study, we have generated chromosomal knockouts by performing in-frame deletions and allelic replacements. Characterizing the function of each of the five genes is important for us to better understand CPA biosynthesis and the mechanisms of chain length termination and regulation of this unique D-rhamnan polysaccharide

    The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology

    No full text
    The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies
    corecore