2 research outputs found

    A comparison of FDG PET/MR and PET/CT for staging, response assessment, and prognostic imaging biomarkers in lymphoma

    Get PDF
    The aim of the current study was to investigate the diagnostic performance of FDG PET/MR compared to PET/CT in a patient cohort including Hodgkins lymphoma, diffuse large B-cell lymphoma, and high-grade B-cell lymphoma at baseline and response assessment. Sixty-one patients were examined with FDG PET/CT directly followed by PET/MR. Images were read by two pairs of nuclear medicine physicians and radiologists. Concordance for lymphoma involvement between PET/MR and the reference standard PET/CT was assessed at baseline and response assessment. Correlation of prognostic biomarkers Deauville score, criteria of response, SUVmax, SUVpeak, and MTV was performed between PET/MR and PET/CT. Baseline FDG PET/MR showed a sensitivity of 92.5% and a specificity 97.9% compared to the reference standard PET/CT (κ 0.91) for nodal sites. For extranodal sites, a sensitivity of 80.4% and a specificity of 99.5% were found (κ 0.84). Concordance in Ann Arbor was found in 57 of 61 patients (κ 0.92). Discrepancies were due to misclassification of region and not lesion detection. In response assessment, a sensitivity of 100% and a specificity 99.9% for all sites combined were found (κ 0.92). There was a perfect agreement on Deauville scores 4 and 5 and criteria of response between the two modalities. Intraclass correlation coefficient (ICC) for SUVmax, SUVpeak, and MTV values showed excellent reliability (ICC > 0.9). FDG PET/MR is a reliable alternative to PET/CT in this patient population, both in terms of lesion detection at baseline staging and response assessment, and for quantitative prognostic imaging biomarkers

    Prognostic value of combined MTV and ADC derived from baseline FDG PET/MRI in aggressive non-Hodgkins lymphoma

    Get PDF
    Purpose: The aim of this prospective study was to investigate the prognostic value of metabolic tumor volume (MTV) and apparent diffusion coefficient (ADC) from baseline FDG PET/MRI compared to established clinical risk factors in terms of progression free survival (PFS) at 2 years in a cohort of diffuse large B-cell Lymphoma (DLBCL) and high-grade-B-cell lymphoma (HGBCL). Methods: Thirty-three patients and their baseline PET/MRI examinations were included. Images were read by two pairs of nuclear medicine physicians and radiologists for defining lymphoma lesions. MTV was computed on PET, and up to six lymphoma target lesions with restricted diffusion was defined for each PET/MRI examination. Minimum ADC (ADCmin) and the corresponding mean ADC (ADCmean) from the target lesion with the lowest ADCmin were included in the analyses. For the combined PET/MRI parameters, the ratio between MTV and the target lesion with the lowest ADCmin (MTV/ADCmin) and the corresponding ADCmean (MTV/ADCmean) was calculated for each patient. Clinical, histological, and PET/MRI parameters were compared between the treatment failure and treatment response group, while survival analyses for each variable was performed by using univariate Cox regression. In case of significant variables in the Cox regression analyses, Kaplan-Meier survival analyses with log-rank test was used to study the effect of the variables on PFS. Results: ECOC PS scale ≥2 (p = 0.05) and ADCmean (p = 0.05) were significantly different between the treatment failure group (n = 6) and those with treatment response (n = 27). Survival analyses showed that ADCmean was associated with PFS (p = 0.02, [HR 2.3 for 1 SD increase]), while combining MTV and ADC did not predict outcome. In addition, ECOG PS ≥2 (p = 0.01, [HR 13.3]) and histology of HGBCL (p = 0.02 [HR 7.6]) was significantly associated with PFS. Conclusions: ADCmean derived from baseline MRI could be a prognostic imaging biomarker for DLBCL and HGBCL. Baseline staging with PET/MRI could therefore give supplementary prognostic information compared to today’s standard PET/CT
    corecore