15 research outputs found

    Transition metal complexes of an isatinic quinolyl hydrazone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione) and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-yl)hydrazono] indolin-2-one.</p> <p>Results</p> <p>Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding <it>viz</it>. (NNO)<sup>2-</sup>, (NO)<sup>- </sup>and (NO) per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D<sub>4h</sub>- symmetry) and depend mainly on the mole ratio (M:L).</p> <p>Conclusion</p> <p>The effect of the type of the metal ion for the same anion (Cl<sup>-</sup>) is obvious from either structural diversity of the isolated complexes (O<sub>h</sub>, T<sub>d </sub>and D<sub>4h</sub>) or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl<sup>-</sup>) except complex <b>5 </b>(SO<sub>4</sub><sup>2-</sup>) in which it uses its lactam form. The obtained Pd(II)- complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D<sub>4h</sub>) geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for <it>S. aureus </it>bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt(II) > Copper(II) ≈ Palladium(II) >> Iron(III).</p

    Modified Canny Detector-based Active Contour for Segmentation

    Get PDF
    In the present work, an integrated modified canny detector and an active contour were proposed for automated medical image segmentation. Since the traditional canny detector (TCD) detects only the edge’s pixels, which are insufficient for labelling the image, a shape feature was extracted to select the initial region of interest ‘IROI’ as an initial mask for the active contour without edge (ACWE), using a proposed modified canny detector (MCD). This procedure overcomes the drawback of the manual initialization of the mask location and shape in the traditional ACWE, which is sensitive to the shape of region of region of interest (ROI). The proposed method solves this problem by selecting the initial location and shape of the IROI using the MCD. Also, a post-processing stage was applied for more cleaning and smoothing the ROI. A practical computational time is achieved as the proposed system requires less than 5 minutes, which is significantly less than the required time using the traditional ACWE. The results proved the ability of the proposed method for medical image segmentation with average dice 87.54%

    Modified Canny Detector-based Active Contour for Segmentation

    Get PDF
    In the present work, an integrated modified canny detector and an active contour were proposed for automated medical image segmentation. Since the traditional canny detector (TCD) detects only the edge’s pixels, which are insufficient for labelling the image, a shape feature was extracted to select the initial region of interest ‘IROI’ as an initial mask for the active contour without edge (ACWE), using a proposed modified canny detector (MCD). This procedure overcomes the drawback of the manual initialization of the mask location and shape in the traditional ACWE, which is sensitive to the shape of region of region of interest (ROI). The proposed method solves this problem by selecting the initial location and shape of the IROI using the MCD. Also, a post-processing stage was applied for more cleaning and smoothing the ROI. A practical computational time is achieved as the proposed system requires less than 5 minutes, which is significantly less than the required time using the traditional ACWE. The results proved the ability of the proposed method for medical image segmentation with average dice 87.54%

    Copper(II)-Complexes of an Isatinic Quinolyl Hydrazone-Anion effect

    Get PDF
    Abstract Ne

    The ligational behavior of an isatinic quinolyl hydrazone towards copper(II)- ions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring. Quinoline ring has therapeutic and biological activities whereas, the indole ring occurs in Jasmine flowers and Orange blossoms. As a ligand, the isatin moiety is potentially ambidentate and can coordinate the metal ions either through its lactam or lactim forms. In a previous study, the ligational behavior of a phenolic quinolyl hydrazone towards copper(II)- ions has been studied. As continuation of our interest, the present study is planned to check the ligational behavior of an isatinic quinolyl hydrazone.</p> <p>Results</p> <p>New homo- and heteroleptic copper(II)- complexes were obtained from the reaction of an isatinic quinolyl hydrazone (HL) with several copper(II)- salts <it>viz. </it>Clˉ, Brˉ, NO<sub>3</sub>ˉ, ClO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>2- </sup>and AcO<sup>-</sup>. The obtained complexes have O<sub>h</sub>, T<sub>d </sub>and D<sub>4h</sub>- symmetry and fulfill the strong coordinating ability of Clˉ, Brˉ, NO<sub>3</sub>ˉ and SO<sub>4</sub><sup>2- </sup>anions. Depending on the type of the anion, the ligand coordinates the copper(II)- ions either through its lactam (NO<sub>3</sub>ˉ and ClO<sub>4</sub><sup>-</sup>) or lactim (the others) forms.</p> <p>Conclusion</p> <p>The effect of anion for the same metal ion is obvious from either the geometry of the isolated complexes (O<sub>h</sub>, T<sub>d </sub>and D<sub>4h</sub>) or the various modes of bonding. Also, the obtained complexes fulfill the strong coordinating ability of Clˉ, Brˉ, NO<sub>3</sub>ˉ and SO<sub>4</sub><sup>2- </sup>anions in consistency with the donor ability of the anions. In case of copper(II)- acetate, a unique homoleptic complex (<b>5</b>) was obtained in which the AcO<sup>- </sup>anion acts as a base enough to quantitatively deprotonate the hydrazone. The isatinic hydrazone uses its lactim form in most complexes.</p

    The ligational behavior of a phenolic quinolyl hydrazone towards copper(II)- ions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heterocyclic hydrazones constitute an important class of biologically active drug molecules. The hydrazones have also been used as herbicides, insecticides, nematocides, redenticides, and plant growth regulators as well as plasticizers and stabilizers for polymers. The importance of the phenolic quinolyl hydrazones arises from incorporating the quinoline ring with the phenolic compound; 2,4-dihydroxy benzaldehyde. Quinoline ring has therapeutic and biological activities whereas, phenols have antiseptic and disinfectants activities and are used in the preparation of dyes, bakelite and drugs. The present study is planned to check the effect of the counter anions on the type and geometry of the isolated copper(II)- complexes as well as the ligational behavior of the phenolic hydrazone; 4-[(2-(4,8-dimethylquinolin-2-yl)hydrazono)methyl] benzene-1,3-diol; (H<sub>2</sub>L).</p> <p>Results</p> <p>A phenolic quinolyl hydrazone (H<sub>2</sub>L) was allowed to react with various copper(II)- salts (Cl‾, Br‾, NO<sub>3</sub>‾, ClO<sub>4</sub>‾, AcO‾, SO<sub>4</sub><sup>2-</sup>). The reactions afforded dimeric complexes (ClO<sub>4</sub>‾, AcO‾ ), a binuclear complex (NO<sub>3</sub>‾ ) and mononuclear complexes (the others; Cl‾, Br‾, SO<sub>4</sub><sup>2-</sup>). The isolated copper(II)- complexes have octahedral, square pyramid and square planar geometries. Also, they reflect the strong coordinating ability of NO<sub>3</sub>‾, Cl‾, Br‾, AcO‾ and SO<sub>4</sub><sup>2- </sup>anions. Depending on the type of the anion, the ligand showed three different modes of bonding <it>viz</it>. (NN)<sup>0 </sup>for the mononuclear complexes (<b>3, 4, 6</b>), (NO)<sup>- </sup>with O- bridging for the dimeric complexes (<b>1, 5</b>) and a mixed mode [(NN)<sup>0 </sup>+ (NO)<sup>- </sup>with O- bridging] for the binuclear nitrato- complex (<b>2</b>).</p> <p>Conclusion</p> <p>The ligational behavior of the phenolic hydrazone (H<sub>2</sub>L) is highly affected by the type of the anion. The isolated copper(II)- complexes reflect the strong coordinating power of the SO<sub>4</sub><sup>2-</sup>, AcO‾, Br‾, Cl‾ and NO<sub>3</sub>‾ anions. Also, they reflect the structural diversity (octahedral, square pyramid and square planar) depending on the type of the counter anion.</p

    Ligand substitution reactions of a phenolic quinolyl hydrazone; oxidovanadium (IV) complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H<sub>2</sub>L; primary ligand) with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands) towards oxidovanadium (IV) ions.</p> <p>Results</p> <p>Mono- and binuclear oxidovanadium (IV) - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV)- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen), 1,10-phenanthroline (Phen) or 8-hydroxyquinoline (Oxine). The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging). All the obtained complexes have the preferable octahedral geometry except the oxinato complex (<b>2</b>) which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study.</p> <p>Conclusion</p> <p>The ligand exchange (substitution/replacement) reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine) compared to the phenolic quinolyl hydrazone (H<sub>2</sub>L) towards oxidovanadium (IV) ion; (complexes <b>2 </b>and <b>3</b>). By contrast, in case of the more flexible aliphatic competitor (Tmen), an adduct was obtained (<b>4</b>). The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV)- ion; Oxine or Phen >> phenolic hydrazone (H<sub>2</sub>L) > Tmen.</p
    corecore