2 research outputs found
Optimum Green Synthesis, Characterization, and Antibacterial Activity of Silver Nanoparticles Prepared from an Extract of Aloe fleurentinorum
The synthesis of metal nanoparticles through the use of plant extract is a process that is not only simple but also inexpensive, quick, and favorable to the environment. As a result, it is utilized in a wide variety of fields. When synthesizing silver nanoparticles (AgNPs), several different kinds of plant extracts were utilized. The manufacture of silver nanoparticles was carried out in this study using an environmentally friendly technique. The aqueous extract of the Aloe fleurentinorum plant was utilized as a stabilizing and reducing agent. To determine the optimal conditions for the synthesis of silver nanoparticles, it was necessary to investigate the impact of several parameters on the process. These parameters included the reactant volume ratio, pH values, temperature, and reaction time. To get crystallite and stable silver nanoparticles, an aqueous solution of AgNO3 (0.01M) was added to an aqueous extract of Aloe fleurentinorum plant at a temperature of 60 degrees Celsius and a pH of 8. The mixture was then stirred with a magnetic stirrer for ninety minutes (90 minutes). Using a variety of methods (UV-vis spectrophotometer, FTIR, XRD, SEM, EDX, and XPS), several approaches were utilized to investigate and describe the green-produced AgNPs. Through the use of the SEM method, it was demonstrated that the morphology of AgNPs is tetrahedral. It was determined using X-ray diffraction that the size of crystalline AgNPs was 26.7 nm. AgNPs that have been optimally synthesized have antibacterial properties that are both significant and effective against various bacterial species that have been tested at varying doses
Gold nanoparticles loaded on TiO2 nanoparticles doped with N2 as an efficient electrocatalyst for glucose oxidation: preparation, characterization, and electrocatalytic properties
Abstract A powder of titanium oxide nanoparticles (TiO2 NPs) was synthesized in this study by anodizing in 0.7 M HClO4 and then annealing in N2 at 450 °C for 3 h to produce TiO2 NPs-N2 powder as a catalyst. These TiO2 NPs-N2 nanoparticles were then encrusted with Au nanoparticles utilizing the photodeposition procedure with tetrachloroauric acid (HAuCl4) and isopropanol as sacrificial donors. With a surface area of 121 m2g−1, the Au NPs/TiO2 NPs-N2 powder catalyst has a high surface area, according to the Barrett–Joyner–Halenda technique. According to X-ray diffraction (XRD) analysis, TiO2 NPs-N2 contained uniformly integrated Au nanoparticles with an average crystallite size of about 26.8 nm. The XRD patterns showed that the prepared Au NPs/TiO2 NPs-N2 were crystallites and nano-sized. The transmission electron microscopy image revealed the spherical shape of the nanoparticles and their tendency for agglomeration. Utilizing the cyclic voltammetry, the electrochemical properties of the catalyst TiO2 NPs powders in a basic glucose solution were investigated. The electrocatalytic activity and stability of the loaded Au NPs/TiO2 NPs-N2 powder on the working electrode for the electrocatalytic oxidation of glucose were astonishingly high. The Au NPs/TiO2 NPs-N2 catalyst demonstrated electrocatalytic characteristics that were superior to a commercially available polycrystalline gold electrode in the application involving glucose alkaline fuel cells