42 research outputs found

    Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

    Get PDF
    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk

    Ageing effect of plasma-treated wool

    Full text link
    Atmospheric pressure plasma treatment of wool fabric, with a relatively short exposure time, effectively removed the covalently bonded lipid layer from the wool surface. The plasma-treated fabric showed increased wettability and the fibres showed greater roughness. X-ray photoelectron spectroscopy (XPS) analysis showed a much more hydrophilic surface with significant increases in oxygen and nitrogen concentrations and a decrease in carbon concentration. Adhesion, as measured by scanning probe microscopy (SPM) force volume analysis, also increased, consistent with the more hydrophilic surface leading to a greater meniscus force on the SPM probe. The ageing of fibres from the plasma-treated fabric was assessed over a period of 28 days. While no physical changes were observed, the chemical nature of the surface changed significantly. XPS showed a decrease in the hydrophilic nature of the surface with time, consistent with the measured decrease in wettability. This change is proposed to be due to the reorientation of proteolipid chains. SPM adhesion studies also showed the surface to be changing with time. After ageing for 28 days, the plasma-treated surface was relatively stable and still dramatically different from the untreated fibre, suggesting that the oxidation of the surface and modification or removal of the lipid layer were permanent

    Material Properties of Lipid Microdomains: Force-Volume Imaging Study of the Effect of Cholesterol on Lipid Microdomain Rigidity

    Get PDF
    AbstractThe effect of cholesterol (CHOL) on the material properties of supported lipid bilayers composed of lipid mixtures that mimic the composition of lipid microdomains was studied by force-volume (FV) imaging under near-physiological conditions. These studies were carried out with lipid mixtures of dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and sphingomyelin. FV imaging enabled simultaneous topology and force measurements of sphingomyelin-rich domains (higher domain (HD)) and phospholipid-rich domains (lower domain (LD)), which allowed quantitative measurement of the force needed to puncture the lipid bilayer with or without CHOL. The force required to penetrate the various domains of the bilayer was probed using high- and low-ionic-strength buffers as a function of increasing amounts of CHOL in the bilayer. The progressive addition of CHOL also led to a decreasing height difference between HD and LD. FV imaging further demonstrated a lack of adhesion between the atomic force microscope tip and the HD or LD at loads below the breakthrough force. These results can lead to a better understanding of the role that CHOL plays in the mechanical properties of cellular membranes in modulating membrane rigidity, which has important implications for cellular mechanotransduction

    Surface functionalization of unsized carbon fiber using nitrenes derived from organic azides

    Full text link
    The surface of both oxidized and unoxidized unsized carbon fiber was functionalized using an aziridine linking group derived from reactive nitrenes. The aziridine functionality arose from the cyclization of a reactive nitrene species onto the highly electron rich graphitic surface of the carbon fibers; the nitrene species evolved from thermal N2 elimination from the corresponding (room temperature stable) azide. Surface functionalization using the nitrene approach was supported by X-ray Photoelectron Spectroscopy, in both oxidized and unoxidized carbon fiber. Attempts were also made to functionalize using amide chemistry, the two-step acid chloride coupling being successful for oxidized fibers by utilizing the carboxylic acid rich defect sites on the carbon fiber. None of the chemical treatment pathways had a significant impact on the tensile strength of the individual fibers, and atomic force microscopy revealed that fibers undergoing these treatment methodologies remained intact, without creating additional surface defects

    Functionalisation of carbon fiber toward enhanced fiber-matrix adhesion

    Full text link
    The surface of both oxidized and unoxidized unsized carbon fiber was functionalized using an aziridine linking group derived from reactive nitrenes, attempts were made to install pendant amines using amide chemistry. Surface functionalization using the nitrene approach was supported by X-ray Photoelectron Spectroscopy, in both oxidized and unoxidized carbon fiber. None of the chemical treatment pathways had a significant impact on the tensile strength of the individual fibers, and atomic force microscopy revealed that fibers undergoing these treatment methodologies remained intact, without creating additional surface defects

    A systematic study of carbon fibre surface grafting via in situ diazonium generation for improved interfacial shear strength in epoxy matrix composites

    Full text link
    A recently established means of surface functionalization of unsized carbon fibres for enhanced compatibility with epoxy resins was optimised and evaluated using interfacial shear stress measurements. Interfacial adhesion has a strong influence on the bulk mechanical properties of composite materials. In this work we report on the optimisation of our aryl diazo-grafting methodology via a series of reagent concentration studies. The fibres functionalised at each concentration are characterised physically (tensile strength, modulus, coefficient of friction, and via AFM), and chemically (XPS). The interfacial shear strength (IFSS) of all treated fibres was determined via the single fibre fragmentation test, using the Kelly-Tyson model. Large increases in IFSS for all concentrations (28-47%) relative to control fibres were observed. We show that halving the reagent concentration increased the coefficient of friction of the fibre and the interfacial shear strength of the composite while resulting in no loss of the key performance characteristics in the treated fibre
    corecore