3,473 research outputs found

    Evaporative depolarization and spin transport in a unitary trapped Fermi gas

    Full text link
    We consider a partially spin-polarized atomic Fermi gas in a high-aspect-ratio trap, with a flux of predominantly spin-up atoms exiting the center of the trap. We argue that such a scenario can be produced by evaporative cooling, and we find that it can result in a substantially non-equilibrium polarization pattern for typical experimental parameters. We offer this as a possible explanation for the quantitative discrepancies in recent experiments on spin-imbalanced unitary Fermi gases.Comment: 6 pages, 3 figures; published versio

    Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing

    Full text link
    We study interacting GaAs bilayer hole systems, with very small interlayer tunneling, in a counterflow geometry where equal currents are passed in opposite directions in the two, independently contacted layers. At low temperatures, both the longitudinal and Hall counterflow resistances tend to vanish in the quantum Hall state at total bilayer filling ν=1\nu=1, demonstrating the pairing of oppositely charged carriers in opposite layers. The temperature dependence of the counterflow Hall resistance is anomalous compared to the other transport coefficients: even at relatively high temperatures (∼\sim600mK), it develops a very deep minimum, with a value that is about an order of magnitude smaller than the longitudinal counterflow resistivity.Comment: 4+ pages, 4 figure

    Trimers, molecules and polarons in imbalanced atomic Fermi gases

    Full text link
    We consider the ground state of a single "spin-down" impurity atom interacting attractively with a "spin-up" atomic Fermi gas. By constructing variational wave functions for polarons, molecules and trimers, we perform a detailed study of the transitions between each of these dressed bound states as a function of mass ratio r=m↑/m↓r=m_\uparrow/m_\downarrow and interaction strength. We find that the presence of a Fermi sea enhances the stability of the pp-wave trimer, which can be viewed as a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) molecule that has bound an additional majority atom. For sufficiently large rr, we find that the transitions lie outside the region of phase separation in imbalanced Fermi gases and should thus be observable in experiment, unlike the well-studied equal-mass case.Comment: 5 pages, 2 figure

    Heat and spin transport in a cold atomic Fermi gas

    Full text link
    Motivated by recent experiments measuring the spin transport in ultracold unitary atomic Fermi gases (Sommer et al., 2011; Sommer et al., 2011), we explore the theory of spin and heat transport in a three-dimensional spin-polarized atomic Fermi gas. We develop estimates of spin and thermal diffusivities and discuss magnetocaloric effects, namely the the spin Seebeck and spin Peltier effects. We estimate these transport coefficients using a Boltzmann kinetic equation in the classical regime and present experimentally accessible signatures of the spin Seebeck effect. We study an exactly solvable model that illustrates the role of momentum-dependent scattering in the magnetocaloric effects.Comment: 18 pages, 6 figures, slight notation changes from previous versio

    Enlarging and cooling the N\'eel state in an optical lattice

    Full text link
    We propose an experimental scheme to favor both the realization and the detection of the N\'eel state in a two-component gas of ultracold fermions in a three-dimensional simple-cubic optical lattice. By adding three compensating Gaussian laser beams to the standard three pairs of retroreflected lattice beams, and adjusting the relative waists and intensities of the beams, one can significantly enhance the size of the N\'eel state in the trap, thus increasing the signal of optical Bragg scattering. Furthermore, the additional beams provide for adjustment of the local chemical potential and the possibility to evaporatively cool the gas while in the lattice. Our proposals are relevant to other attempts to realize many-body quantum phases in optical lattices.Comment: 8 pages, 10 figures (significantly revised text and figures

    Universality and Crossover of Directed Polymers and Growing Surfaces

    Full text link
    We study KPZ surfaces on Euclidean lattices and directed polymers on hierarchical lattices subject to different distributions of disorder, showing that universality holds, at odds with recent results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward the universal values of the exponents and verify that the exponent governing such crossover is universal too. In the limit of a 1+epsilon dimensional system we obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let

    Phase separation and collapse in Bose-Fermi mixtures with a Feshbach resonance

    Full text link
    We consider a mixture of single-component bosonic and fermionic atoms with an interspecies interaction that is varied using a Feshbach resonance. By performing a mean-field analysis of a two-channel model, which describes both narrow and broad Feshbach resonances, we find an unexpectedly rich phase diagram at zero temperature: Bose-condensed and non-Bose-condensed phases form a variety of phase-separated states that are accompanied by both critical and tricritical points. We discuss the implications of our results for the experimentally observed collapse of Bose-Fermi mixtures on the attractive side of the Feshbach resonance, and we make predictions for future experiments on Bose-Fermi mixtures close to a Feshbach resonance.Comment: 7 pages, 3 figures. Extended versio

    On the magnetization of two-dimensional superconductors

    Full text link
    We calculate the magnetization of a two-dimensional superconductor in a perpendicular magnetic field near its Kosterlitz-Thouless transition and at lower temperatures. We find that the critical behavior is more complex than assumed in the literature and that, in particular, the critical magnetization is {\it not} field independent as naive scaling predicts. In the low temperature phase we find a substantial fluctuation renormalization of the mean-field result. We compare our analysis with the data on the cuprates.Comment: 8 pages, 3 figure

    Competing density-wave orders in a one-dimensional hard-boson model

    Get PDF
    We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear chain, which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most one boson. A special case of our model was recently proposed as a description of a ``tilted'' Mott insulator of atoms trapped in an optical lattice. Our quantum Hamiltonian is shown to generate the transfer matrix of Baxter's hard-square model. Aided by exact solutions of a number of special cases, and by numerical studies, we obtain a phase diagram containing states with long-range density-wave order with period 2 and period 3, and also a floating incommensurate phase. Critical theories for the various quantum phase transitions are presented. As a byproduct, we show how to compute the Luttinger parameter in integrable theories with hard-exclusion constraints.Comment: 16 page

    Nernst effect in the vortex-liquid regime of a type-II superconductor

    Full text link
    We measure the transverse thermoelectric coefficient αxy\alpha_{xy} in simulations of type-II superconductors in the vortex liquid regime, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise. Our results are in reasonably good quantitative agreement with experimental data on cuprate samples, suggesting that this simple model of superconducting fluctuations contains much of the physics behind the large Nernst effect observed in these materials.Comment: 6 pages. Expanded version of text. New Fig.
    • …
    corecore