6,456 research outputs found
Proximity Drawings of High-Degree Trees
A drawing of a given (abstract) tree that is a minimum spanning tree of the
vertex set is considered aesthetically pleasing. However, such a drawing can
only exist if the tree has maximum degree at most 6. What can be said for trees
of higher degree? We approach this question by supposing that a partition or
covering of the tree by subtrees of bounded degree is given. Then we show that
if the partition or covering satisfies some natural properties, then there is a
drawing of the entire tree such that each of the given subtrees is drawn as a
minimum spanning tree of its vertex set
When the Earth trembles in the americas: the experience of haiti and chile 2010.
The response of the nephrological community to the Haiti and Chile earthquakes which occurred in the first months of 2010 is described. In Haiti, renal support was organized by the Renal Disaster Relief Task Force (RDRTF) of the International Society of Nephrology (ISN) in close collaboration with Médecins Sans Frontières (MSF), and covered both patients with acute kidney injury (AKI) and patients with chronic kidney disease (CKD). The majority of AKI patients (19/27) suffered from crush syndrome and recovered their kidney function. The remaining 8 patients with AKI showed acute-to-chronic renal failure with very low recovery rates. The intervention of the RDRTF-ISN involved 25 volunteers of 9 nationalities, lasted exactly 2 months, and was characterized by major organizational difficulties and problems to create awareness among other rescue teams regarding the availability of dialysis possibilities. Part of the Haitian patients with AKI reached the Dominican Republic (DR) and received their therapy there. The nephrological community in the DR was able to cope with this extra patient load. In both Haiti and the DR, dialysis treatment was able to be prevented in at least 40 patients by screening and adequate fluid administration. Since laboratory facilities were destroyed in Port-au-Prince and were thus lacking during the first weeks of the intervention, the use from the very beginning on of a point-of-care device (i-STAT®) was very efficient for the detection of aberrant kidney function and electrolyte parameters. In Chile, nephrological problems were essentially related to difficulties delivering dialysis treatment to CKD patients, due to the damage to several units. This necessitated the reallocation of patients and the adaptation of their schedules. The problems could be handled by the local nephrologists. These observations illustrate that local and international preparedness might be life-saving if renal problems occur in earthquake circumstances
A simple one-dimensional model of heat conduction which obeys Fourier's law
We present the computer simulation results of a chain of hard point particles
with alternating masses interacting on its extremes with two thermal baths at
different temperatures. We found that the system obeys Fourier's law at the
thermodynamic limit. This result is against the actual belief that one
dimensional systems with momentum conservative dynamics and nonzero pressure
have infinite thermal conductivity. It seems that thermal resistivity occurs in
our system due to a cooperative behavior in which light particles tend to
absorb much more energy than the heavier ones.Comment: 5 pages, 4 figures, to be published in PR
First and second variation formulae for the sub-Riemannian area in three-dimensional pseudo-hermitian manifolds
We calculate the first and the second variation formula for the
sub-Riemannian area in three dimensional pseudo-hermitian manifolds. We
consider general variations that can move the singular set of a C^2 surface and
non-singular variation for C_H^2 surfaces. These formulas enable us to
construct a stability operator for non-singular C^2 surfaces and another one
for C2 (eventually singular) surfaces. Then we can obtain a necessary condition
for the stability of a non-singular surface in a pseudo-hermitian 3-manifold in
term of the pseudo-hermitian torsion and the Webster scalar curvature. Finally
we classify complete stable surfaces in the roto-traslation group RT .Comment: 36 pages. Misprints corrected. Statement of Proposition 9.8 slightly
changed and Remark 9.9 adde
Telling Victims from Criminals: Human Trafficking for the Purposes of Criminal Exploitation
[Abstract]: Directive 2011/36/EU on preventing and combating trafficking in human beings and protecting its victims has expressly included the exploitation of criminal activities as one of the possible purposes of this crime. Consequently, not only was the concept of human trafficking broadened but also the difficulties in identifying victims, particularly in this type of exploitation in which many trafficked people are actually treated as criminals. This chapter will examine the wide variety of actions that can amount to human trafficking for criminal exploitation, using facts and cases reported by governmental and non-governmental organizations as key documents. These experiences will highlight the challenges of differentiating between criminals and trafficking victims, and will serve as a basis for suggesting some improvements in order to guarantee victims’ protection
Peeling back the layers of crassulacean acid metabolism: functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that offers the potential to engineer improved water‐use efficiency (WUE) and drought resilience in C3 plants while sustaining productivity in the hotter and drier climates that are predicted for much of the world. CAM species show an inverted pattern of stomatal opening and closing across the diel cycle, which conserves water and provides a means of maintaining growth in hot, water‐limited environments. Recent genome sequencing of the constitutive model CAM species Kalanchoë fedtschenkoi provides a platform for elucidating the ensemble of proteins that link photosynthetic metabolism with stomatal movement, and that protect CAM plants from harsh environmental conditions. We describe a large‐scale proteomics analysis to characterize and compare proteins, as well as diel changes in their abundance in guard cell‐enriched epidermis and mesophyll cells from leaves of K. fedtschenkoi. Proteins implicated in processes that encompass respiration, the transport of water and CO2, stomatal regulation, and CAM biochemistry are highlighted and discussed. Diel rescheduling of guard cell starch turnover in K. fedtschenkoi compared with that observed in Arabidopsis is reported and tissue‐specific localization in the epidermis and mesophyll of isozymes implicated in starch and malate turnover are discussed in line with the contrasting roles for these metabolites within the CAM mesophyll and stomatal complex. These data reveal the proteins and the biological processes enriched in each layer and provide key information for studies aiming to adapt plants to hot and dry environments by modifying leaf physiology for improved plant sustainability
Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer.
The introduction of serum Prostate Specific Antigen (PSA) testing nearly 30 years ago has been associated with a significant shift towards localized disease and decreased deaths due to prostate cancer. Recognition that PSA testing has caused over diagnosis and over treatment of prostate cancer has generated considerable controversy over its value, and has spurred efforts to identify prognostic biomarkers to distinguish patients who need treatment from those that can be observed. Recent studies show that cancer is heterogeneous and forms a hierarchy of tumor cell populations. We developed a method of identifying prostate cancer differentiation states related to androgen signaling using Boolean logic. Using gene expression data, we identified two markers, CD38 and ARG2, that group prostate cancer into three differentiation states. Cancers with CD38-, ARG2- expression patterns, corresponding to an undifferentiated state, had significantly lower 10-year recurrence-free survival compared to the most differentiated group (CD38+ARG2+). We carried out immunohistochemical (IHC) staining for these two markers in a single institution (Stanford; n = 234) and multi-institution (Canary; n = 1326) cohorts. IHC staining for CD38 and ARG2 in the Stanford cohort demonstrated that combined expression of CD38 and ARG2 was prognostic. In the Canary cohort, low CD38 protein expression by IHC was significantly associated with recurrence-free survival (RFS), seminal vesicle invasion (SVI), extra-capsular extension (ECE) in univariable analysis. In multivariable analysis, ARG2 and CD38 IHC staining results were not independently associated with RFS, overall survival, or disease-specific survival after adjusting for other factors including SVI, ECE, Gleason score, pre-operative PSA, and surgical margins
The effects of weather and climate change on dengue
There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors
Nonlinear driven diffusive systems with dissipation: fluctuating hydrodynamics
We consider a general class of nonlinear diffusive models with bulk
dissipation and boundary driving, and derive its hydrodynamic description in
the large size limit. Both the average macroscopic behavior and the fluctuating
properties of the hydrodynamic fields are obtained from the microscopic
dynamics. This analysis yields a fluctuating balance equation for the local
energy density at the mesoscopic level, characterized by two terms: (i) a
diffusive term, with a current that fluctuates around its average behavior
given by nonlinear Fourier's law, and (ii) a dissipation term which is a
general function of the local energy density. The quasi-elasticity of
microscopic dynamics, required in order to have a nontrivial competition
between diffusion and dissipation in the macroscopic limit, implies a noiseless
dissipation term in the balance equation, so dissipation fluctuations are
enslaved to those of the density field. The microscopic complexity is thus
condensed in just three transport coefficients, the diffusivity, the mobility
and a new dissipation coefficient, which are explicitly calculated within a
local equilibrium approximation. Interestingly, the diffusivity and mobility
coefficients obey an Einstein relation despite the fully nonequilibrium
character of the problem. The general theory here presented is applied to a
particular albeit broad family of systems, the simplest nonlinear dissipative
variant of the so-called KMP model for heat transport. The theoretical
predictions are compared to extensive numerical simulations, and an excellent
agreement is found.Comment: 18 pages, 11 figure
- …