6 research outputs found
Social play and the development of temperament in juvenile Belding’s ground squirrels (Urocitellus beldingi)
We evaluated the hypothesis that social play behavior influences the development of temperament in young animals, using docility as a measure of temperament. We observed the play behavior of juvenile Belding’s ground squirrels (Urocitellus beldingi) during the developmental period in which play primarily occurs, and conducted behavioral tests measuring docility at the beginning and end of the play interval. Tests involved handling squirrels and recording their responses. Body mass was a reliable predictor of docility at the beginning of the play period. Rates of social play and maximum distances traveled from the natal burrow during the play interval were reliable predictors of change in docility across the play period. Juveniles who played at higher rates and traveled farther from the natal burrow tended to have greater decreases in docility over the play interval, supporting the idea that social play and other early-life experiences might influence the development of tendencies toward more active responses in this species. To gauge docility beyond the juvenile period, we conducted docility tests on females who weaned a litter during the study period, and on yearlings for whom play data were available from the previous year. Among females who weaned a litter during the study period, docility decreased significantly between gestation and emergence of young from the natal burrow. However, docility during gestation and lactation were reliable predictors of docility at litter emergence among reproductive females, suggesting that although docility may vary with reproductive state, individual squirrels may have their own distinct tendency toward docility. Rates of juvenile social play were a significant predictor of docility among yearling squirrels, raising the possibility that possible effects of social on the development of docility may be long term
Social Play Predicts Docility in Juvenile Ground Squirrels
We evaluated the hypothesis that social play behavior influences the development of temperament in young animals, using docility as a measure of temperament. We observed the play behavior of juvenile Belding’s ground squirrels (Urocitellus beldingi) during the developmental period in which play primarily occurs, and conducted behavioral tests measuring docility at the beginning and end of the play interval. Tests involved handling squirrels and recording their responses. Body mass was a reliable predictor of docility at the beginning of the play period. Rates of social play and maximum distances traveled from the natal burrow during the play interval were reliable predictors of change in docility across the play period. Juveniles who played at higher rates and traveled farther from the natal burrow tended to have greater decreases in docility over the play interval, supporting the idea that social play and other early-life experiences might influence the development of tendencies toward more active responses in this species. To gauge docility beyond the juvenile period, we conducted docility tests on females who weaned a litter during the study period, and on yearlings for whom play data were available from the previous year. Among females who weaned a litter during the study period, docility decreased significantly between gestation and emergence of young from the natal burrow. However, docility during gestation and lactation were reliable predictors of docility at litter emergence among reproductive females, suggesting that although docility may vary with reproductive state, individual squirrels may have their own distinct tendency toward docility. Rates of juvenile social play were a significant predictor of docility among yearling squirrels, raising the possibility that possible effects of social on the development of docility may be long term. We note that although we found a correlation between docility and play, we did not establish a causal relationship between them in this study
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background
Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages.
Methods
Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023.
Findings
Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia.
Interpretation
The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC
Recommended from our members
Novel subtypes of severe COVID-19 respiratory failure based on biological heterogeneity: a secondary analysis of a randomized controlled trial.
BACKGROUND: Despite evidence associating inflammatory biomarkers with worse outcomes in hospitalized adults with COVID-19, trials of immunomodulatory therapies have met with mixed results, likely due in part to biological heterogeneity of participants. Latent class analysis (LCA) of clinical and protein biomarker data has identified two subtypes of non-COVID acute respiratory distress syndrome (ARDS) with different clinical outcomes and treatment responses. We studied biological heterogeneity and clinical outcomes in a multi-institutional platform randomized controlled trial of adults with severe COVID-19 hypoxemic respiratory failure (I-SPY COVID). METHODS: Clinical and plasma protein biomarker data were analyzed from 400 trial participants enrolled from September 2020 until October 2021 with severe COVID-19 requiring ≥ 6 L/min supplemental oxygen. Seventeen hypothesis-directed protein biomarkers were measured at enrollment using multiplex Luminex panels or single analyte enzyme linked immunoassay methods (ELISA). Biomarkers and clinical variables were used to test for latent subtypes and longitudinal biomarker changes by subtype were explored. A validated parsimonious model using interleukin-8, bicarbonate, and protein C was used for comparison with non-COVID hyper- and hypo-inflammatory ARDS subtypes. RESULTS: Average participant age was 60 ± 14 years; 67% were male, and 28-day mortality was 25%. At trial enrollment, 85% of participants required high flow oxygen or non-invasive ventilation, and 97% were receiving dexamethasone. Several biomarkers of inflammation (IL-6, IL-8, IL-10, sTNFR-1, TREM-1), epithelial injury (sRAGE), and endothelial injury (Ang-1, thrombomodulin) were associated with 28- and 60-day mortality. Two latent subtypes were identified. Subtype 2 (27% of participants) was characterized by persistent derangements in biomarkers of inflammation, endothelial and epithelial injury, and disordered coagulation and had twice the mortality rate compared with Subtype 1. Only one person was classified as hyper-inflammatory using the previously validated non-COVID ARDS model. CONCLUSIONS: We discovered evidence of two novel biological subtypes of severe COVID-19 with significantly different clinical outcomes. These subtypes differed from previously established hyper- and hypo-inflammatory non-COVID subtypes of ARDS. Biological heterogeneity may explain inconsistent findings from trials of hospitalized patients with COVID-19 and guide treatment approaches
Recommended from our members
Report of the first seven agents in the I-SPY COVID trial: a phase 2, open label, adaptive platform randomised controlled trial
BackgroundAn urgent need exists to rapidly screen potential therapeutics for severe COVID-19 or other emerging pathogens associated with high morbidity and mortality.MethodsUsing an adaptive platform design created to rapidly evaluate investigational agents, hospitalised patients with severe COVID-19 requiring ≥6 L/min oxygen were randomised to either a backbone regimen of dexamethasone and remdesivir alone (controls) or backbone plus one open-label investigational agent. Patients were enrolled to the arms described between July 30, 2020 and June 11, 2021 in 20 medical centres in the United States. The platform contained up to four potentially available investigational agents and controls available for randomisation during a single time-period. The two primary endpoints were time-to-recovery (<6 L/min oxygen for two consecutive days) and mortality. Data were evaluated biweekly in comparison to pre-specified criteria for graduation (i.e., likely efficacy), futility, and safety, with an adaptive sample size of 40-125 individuals per agent and a Bayesian analytical approach. Criteria were designed to achieve rapid screening of agents and to identify large benefit signals. Concurrently enrolled controls were used for all analyses. https://clinicaltrials.gov/ct2/show/NCT04488081.FindingsThe first 7 agents evaluated were cenicriviroc (CCR2/5 antagonist; n = 92), icatibant (bradykinin antagonist; n = 96), apremilast (PDE4 inhibitor; n = 67), celecoxib/famotidine (COX2/histamine blockade; n = 30), IC14 (anti-CD14; n = 67), dornase alfa (inhaled DNase; n = 39) and razuprotafib (Tie2 agonist; n = 22). Razuprotafib was dropped from the trial due to feasibility issues. In the modified intention-to-treat analyses, no agent met pre-specified efficacy/graduation endpoints with posterior probabilities for the hazard ratios [HRs] for recovery ≤1.5 between 0.99 and 1.00. The data monitoring committee stopped Celecoxib/Famotidine for potential harm (median posterior HR for recovery 0.5, 95% credible interval [CrI] 0.28-0.90; median posterior HR for death 1.67, 95% CrI 0.79-3.58).InterpretationNone of the first 7 agents to enter the trial met the prespecified criteria for a large efficacy signal. Celecoxib/Famotidine was stopped early for potential harm. Adaptive platform trials may provide a useful approach to rapidly screen multiple agents during a pandemic.FundingQuantum Leap Healthcare Collaborative is the trial sponsor. Funding for this trial has come from: the COVID R&D Consortium, Allergan, Amgen Inc., Takeda Pharmaceutical Company, Implicit Bioscience, Johnson & Johnson, Pfizer Inc., Roche/Genentech, Apotex Inc., FAST Grant from Emergent Venture George Mason University, The DoD Defense Threat Reduction Agency (DTRA), The Department of Health and Human ServicesBiomedical Advanced Research and Development Authority (BARDA), and The Grove Foundation. Effort sponsored by the U.S. Government under Other Transaction number W15QKN-16-9-1002 between the MCDC, and the Government