22 research outputs found

    Genome sequence of the entomopathogenic Serratia entomophila isolate 626 and characterisation of the species specific itaconate degradation pathway

    Get PDF
    Background: Isolates of Serratia entomophila and S. proteamaculans (Yersiniaceae) cause disease specifc to the endemic New Zealand pasture pest, Costelytra giveni (Coleoptera: Scarabaeidae). Previous genomic profling has shown that S. entomophila isolates appear to have conserved genomes and, where present, conserved plasmids. In the absence of C. giveni larvae, S. entomophila prevalence reduces in the soil over time, suggesting that S. entomophila has formed a host-specifc relationship with C. giveni. To help define potential genetic mechanisms driving retention of the chronic disease of S. entomophila, the genome of the isolate 626 was sequenced, enabling the identifcation of unique chromosomal properties, and defining the gain/loss of accessory virulence factors relevant to pathogenicity to C. giveni larvae. Results: We report the complete sequence of S. entomophila isolate 626, a causal agent of amber disease in C. giveni larvae. The genome of S. entomophila 626 is 5,046,461 bp, with 59.1% G+C content and encoding 4,695 predicted CDS. Comparative analysis with five previously sequenced Serratia species, S. proteamaculans 336X, S. marcescens Db11, S. nematodiphila DH-S01, S. grimesii BXF1, and S. ficaria NBRC 102596, revealed a core of 1,165 genes shared. Further comparisons between S. entomophila 626 and S. proteamaculans 336X revealed fewer predicted phage-like regions and genomic islands in 626, suggesting less horizontally acquired genetic material. Genomic analyses revealed the presence of a four-gene itaconate operon, sharing a similar gene order as the Yersinia pestis ripABC complex. Assessment of a constructed 626::RipC mutant revealed that the operon confer a possible metabolic advantage to S. entomophila in the initial stages of C. giveni infection. Conclusions: Evidence is presented where, relative to S. proteamaculans 336X, S. entomophila 626 encodes fewer genomic islands and phages, alluding to limited horizontal gene transfer in S. entomophila. Bioassay assessments of a S. entomophila-mutant with a targeted mutation of the itaconate degradation region unique to this species, found the mutant to have a reduced capacity to replicate post challenge of the C. giveni larval host, implicating the itaconate operon in establishment within the host

    Purification of high molecular-weight antibacterial proteins of insect pathogenic Brevibacillus laterosporus isolates

    Get PDF
    Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium belonging to the Brevibacillus brevis phylogenetic cluster. Globally, insect pathogenic strains of the bacterium have been isolated, characterised, and some activities patented. Two isolates, Bl 1821L and Bl 1951, exhibiting pathogenicity against the diamondback moth and mosquitoes, are under development as a biopesticide in New Zealand. However, due to the suspected activity of putative antibacterial proteins (ABPs), the endemic isolates often grow erratically. Various purification methods including size exclusion chromatography, sucrose density gradient centrifugation, polyethylene glycol precipitation, and ammonium sulphate precipitation employed in this study enabled the isolation of two putative antibacterial proteins of ~30 kD and ~48 kD from Bl 1821L and one putative antibacterial protein of ~30 kD from Bl 1951. Purification of the uninduced cultures of Bl 1821L and Bl 1951 also yielded the protein bands of ~30 kD and ~48 kD on SDS-PAGE which indicated their spontaneous induction. Disc diffusion assay was used to determine the antagonistic activities of the putative ABPs. Subsequent transmission electron microscope (TEM) examination of purified putative antibacterial protein-containing solution showed the presence of encapsulin (~30 kD) and polysheath (~48 kD) like structures. Although only the ~30 kD protein was purified from Bl 1951, both structures were seen in this strain under TEM. Furthermore, while assessing the antibacterial activity of some fractions of Bl 1951 against Bl 1821L in size exclusion chromatography method, population of Bl 1821L persister cells was noted. Overall, this work added a wealth of knowledge for the purification of the HMW proteins (bacteriocins) of the Gram-positive bacteria including Bl

    Serratia spp. bacteria evolved in Aotearoa-New Zealand for infection of endemic scarab beetles

    Get PDF
    The Melolonthinae branch of the beetle family Scarabaeidae has evolved in isolation in Aotearoa, radiating into >100 endemic species, since Aotearoa separated from Gondwanaland 82 million years ago. The group includes important pasture pests, such as the New Zealand grass grub Costelytra giveni and the manuka beetle Pyronota festiva. These beetles, like other organisms, host their own distinctive microflora including beneficial microbial symbionts and pathogens. A wide range of microbial pathogens infect the Scarabaeidae, but in Aotearoa the bacteria Serratia entomophila, S. proteamaculans and S. quinivorans (Enterobacteriaceae) are frequently found causing natural disease epizootics in C. giveni. S. entomophila is widespread in Aotearoa pasture soils, with only rare isolations of S. entomophila documented in other countries. In contrast S. proteamaculans and S. quinivorans are globally ubiquitous, and are widely distributed within Aotearoa, with some isolates active against either C. giveni or Pyronota spp. larvae, or both. Virulence determinants that impart differential host specificity and potency are located on variants of the amber disease associated plasmid (pADAP). The host specificity of the Serratia-scarab system and the absence of similar systems in other geographies, suggests that the relationship between Serratia spp. and endemic scarabs has evolved in Aotearoa

    Identification of genes involved in exoprotein release using a high-throughput exoproteome screening assay in Yersinia entomophaga

    Get PDF
    Bacterial protein secretion is crucial to the maintenance of viability and pathogenicity. Although many bacterial secretion systems have been identified, the underlying mechanisms regulating their expression are less well explored. Yersinia entomophaga MH96, an entomopathogenic bacterium, releases an abundance of proteins including the Yen-Tc into the growth medium when cultured in Luria Bertani broth at ≤ 25˚C. Through the development of a high-throughput exoproteome screening assay (HESA), genes involved in MH96 exoprotein production were identified. Of 4,080 screened transposon mutants, 34 mutants exhibited a decreased exoprotein release, and one mutation located in the intergenic region of the Yen-Tc operon displayed an elevated exoprotein release relative to the wild-type strain MH96. DNA sequencing revealed several transposon insertions clustered in gene regions associated with lipopolysaccharide (LPSI and LPSII), and N-acyl-homoserine lactone synthesis (quorum sensing). Twelve transposon insertions were located within transcriptional regulators or intergenic regions. The HESA will have broad applicability for identifying genes associated with exoproteome production in a range of microorganisms

    Isolation, purification, and characterisation of a phage tail-like bacteriocin from the insect pathogenic bacterium Brevibacillus laterosporus

    Get PDF
    The Gram-positive and spore-forming bacterium Brevibacillus laterosporus (Bl) belongs to the Brevibacillus brevis phylogenetic cluster. Isolates of the species have demonstrated pesticidal potency against a wide range of invertebrate pests and plant diseases. Two New Zealand isolates, Bl 1821L and Bl 1951, are under development as biopesticides for control of diamondback moth and other pests. However, due to the often-restricted growth of these endemic isolates, production can be an issue. Based on the previous work, it was hypothesised that the putative phages might be involved. During investigations of the cause of the disrupted growth, electron micrographs of crude lysate of Bl 1821L showed the presence of phages’ tail-like structures. A soft agar overlay method with PEG 8000 precipitation was used to differentiate between the antagonistic activity of the putative phage and phage tail-like structures (bacteriocins). Assay tests authenticated the absence of putative phage activity. Using the same method, broad-spectrum antibacterial activity of Bl 1821L lysate against several Gram-positive bacteria was found. SDS-PAGE of sucrose density gradient purified and 10 kD MWCO concentrated lysate showed a prominent protein band of ∼48 kD, and transmission electron microscopy revealed the presence of polysheath-like structures. N-terminal sequencing of the ∼48 kD protein mapped to a gene with weak predicted amino acid homology to a Bacillus PBSX phage-like element xkdK, the translated product of which shared >90% amino acid similarity to the phage tail-sheath protein of another Bl published genome, LMG15441. Bioinformatic analysis also identified an xkdK homolog in the Bl 1951 genome. However, genome comparison of the region around the xkdK gene between Bl 1821L and Bl 1951 found differences including two glycine rich protein encoding genes which contain imperfect repeats (1700 bp) in Bl 1951, while a putative phage region resides in the analogous Bl 1821L region. Although comparative analysis of the genomic organisation of Bl 1821L and Bl 1951 PBSX-like region with the defective phages PBSX, PBSZ, and PBP 180 of Bacillus subtilis isolates 168 and W23, and Bacillus phage PBP180 revealed low amino acids similarity, the genes encode similar functional proteins in similar arrangements, including phage tail-sheath (XkdK), tail (XkdO), holin (XhlB), and N-acetylmuramoyl-L-alanine (XlyA). AMPA analysis identified a bactericidal stretch of 13 amino acids in the ∼48 kD sequenced protein of Bl 1821L. Antagonistic activity of the purified ∼48 kD phage tail-like protein in the assays differed remarkably from the crude lysate by causing a decrease of 34.2% in the number of viable cells of Bl 1951, 18 h after treatment as compared to the control. Overall, the identified inducible phage tail-like particle is likely to have implications for the in vitro growth of the insect pathogenic isolate Bl 1821L

    Lysis cassette-mediated exoprotein release in Yersinia entomophaga is controlled by a PhoB-like regulator

    Get PDF
    Secretion of exoproteins is a key component of bacterial virulence, and is tightly regulated in response to environmental stimuli and host-dependent signals. The entomopathogenic bacterium Yersinia entomophaga MH96 produces a wide range of exoproteins including its main virulence factor, the 2.46 MDa insecticidal Yen-Tc toxin complex. Previously, a high-throughput transposon-based screening assay identified the region of exoprotein release (YeRER) as essential to exoprotein release in MH96. This study defines the role of the YeRER associated ambiguous holin/endolysin-based lysis cluster (ALC) and the novel RoeA regulator in the regulation and release of exoproteins in MH96. A mutation in the ambiguous lysis cassette (ALC) region abolished exoprotein release and caused cell elongation, a phenotype able to be restored through trans-complementation with an intact ALC region. Endogenous ALC did not impact cell growth of the wild type, while artificial expression of an optimized ALC caused cell lysis. Using HolA-sfGFP and Rz1-sfGFP reporters, Rz1 expression was observed in all cells while HolA expression was limited to a small proportion of cells, which increased over time. Transcriptomic assessments found expression of the genes encoding the prominent exoproteins, including the Yen-Tc, was reduced in the roeA mutant and identified a 220 ncRNA of the YeRER intergenic region that, when trans complemented in the wildtype, abolished exoprotein release. A model for Y. entomophaga mediated exoprotein regulation and release is proposed. IMPORTANCE While theoretical models exist, there is not yet any empirical data that links ALC phage-like lysis cassettes with the release of large macro-molecular toxin complexes, such as Yen-Tc in Gram-negative bacteria. In this study, we demonstrate that the novel Y. entomophaga RoeA activates the production of exoproteins (including Yen-Tc) and the ALC at the transcriptional level. The translation of the ALC holin is confined to a subpopulation of cells that then lyse over time, indicative of a complex hierarchical regulatory network. The presence of an orthologous RoeA and a HolA like holin 59 of an eCIS Afp element in Pseudomonas chlororaphis, combined with the presented data, suggests a shared mechanism is required for the release of some large macromolecular protein assemblies, such as the Yen-Tc, and further supports classification of phage-like lysis clusters as type 10 secretion systems

    Purification of high-molecular-weight antibacterial proteins of insect pathogenic Brevibacillus laterosporus isolates

    Get PDF
    Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium belonging to the Brevibacillus brevis phylogenetic cluster. Globally, insect pathogenic strains of the bacterium have been isolated, characterised, and some activities have been patented. Two isolates, Bl 1821L and Bl 1951, exhibiting pathogenicity against the diamondback moth and mosquitoes, are under development as a biopesticide in New Zealand. However, due to the suspected activity of putative antibacterial proteins (ABPs), the endemic isolates often grow erratically. Various purification methods, including size exclusion chromatography, sucrose density gradient centrifugation, polyethylene glycol precipitation, and ammonium sulphate precipitation employed in this study, enabled the isolation of two putative antibacterial proteins of ∼30 and ∼48 kD from Bl 1821L and one putative antibacterial protein of ∼30 kD from Bl 1951. Purification of the uninduced cultures of Bl 1821L and Bl 1951 also yielded protein bands of ∼30 and ∼48 kD on SDS-PAGE, which indicated their spontaneous induction. A disc diffusion assay was used to determine the antagonistic activities of the putative ABPs. Subsequent transmission electron microscope (TEM) examination of a purified putative antibacterial protein-containing solution showed the presence of encapsulin (∼30 kD) and polysheath (∼48 kD)-like structures. Although only the ∼30 kD protein was purified from Bl 1951, both structures were seen in this strain under TEM. Furthermore, while assessing the antibacterial activity of some fractions of Bl 1951 against Bl 1821L in the size exclusion chromatography method, the population of Bl 1821L persister cells was noted. Overall, this work added a wealth of knowledge about the purification of the high-molecular-weight (HMW) proteins (bacteriocins) of Gram-positive bacteria including Bl

    Linocin M18 protein from the insect pathogenic bacterium Brevibacillus laterosporus isolates

    Get PDF
    Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium. Insect pathogenic strains have been characterised in New Zealand, and two isolates, Bl 1821L and Bl 1951, are under development for use in biopesticides. However, growth in culture is sometimes disrupted, affecting mass production. Based on previous work, it was hypothesised that Tectiviridae phages might be implicated. While investigating the cause of the disrupted growth, electron micrographs of crude lysates showed structural components of putative phages including capsid and tail-like structures. Sucrose density gradient purification yielded a putative self-killing protein of ∼30 kDa. N-terminal sequencing of the ∼30 kDa protein identified matches to a predicted 25 kDa hypothetical and a 31.4 kDa putative encapsulating protein homologs, with the genes encoding each protein adjacent in the genomes. BLASTp analysis of the homologs of 31.4 kDa amino acid sequences shared 98.6% amino acid identity to the Linocin M18 bacteriocin family protein of Brevibacterium sp. JNUCC-42. Bioinformatic tools including AMPA and CellPPD defined that the bactericidal potential originated from a putative encapsulating protein. Antagonistic activity of the ∼30 kDa encapsulating protein of Bl 1821L and Bl 1951 during growth in broth exhibited bacterial autolytic activity. LIVE/DEAD staining of Bl 1821L cells after treatment with the ∼30 kDa encapsulating protein of Bl 1821L substantiated the findings by showing 58.8% cells with the compromised cell membranes as compared to 37.5% cells in the control. Furthermore, antibacterial activity of the identified proteins of Bl 1821L was validated through gene expression in a Gram-positive bacterium Bacillus subtilis WB800N

    Evolution of virulence in a novel family of transmissible mega-plasmids

    Get PDF
    Some Serratia entomophila isolates have been successfully exploited in biopesticides due to their ability to cause amber disease in larvae of the Aotearoa (New Zealand) endemic pasture pest, Costelytra giveni. Anti-feeding prophage and ABC toxin complex virulence determinants are encoded by a 153-kb single-copy conjugative plasmid (pADAP; amber disease-associated plasmid). Despite growing understanding of the S. entomophila pADAP model plasmid, little is known about the wider plasmid family. Here, we sequence and analyse mega-plasmids from 50 Serratia isolates that induce variable disease phenotypes in the C. giveni insect host. Mega-plasmids are highly conserved within S. entomophila, but show considerable divergence in Serratia proteamaculans with other variants in S. liquefaciens and S. marcescens, likely reflecting niche adaption. In this study to reconstruct ancestral relationships for a complex mega-plasmid system, strong co-evolution between Serratia species and their plasmids were found. We identify 12 distinct mega-plasmid genotypes, all sharing a conserved gene backbone, but encoding highly variable accessory regions including virulence factors, secondary metabolite biosynthesis, Nitrogen fixation genes and toxin-antitoxin systems. We show that the variable pathogenicity of Serratia isolates is largely caused by presence/absence of virulence clusters on the mega-plasmids, but notably, is augmented by external chromosomally encoded factors

    The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device

    Get PDF
    The ABC toxin complexes produced by certain bacteria are of interest owing to their potent insecticidal activity(1,2) and potential role in human disease(3). These complexes comprise at least three proteins (A, B and C), which must assemble to be fully toxic(4). The carboxyterminal region of the C protein is the main cytotoxic component(5), and is poorly conserved between different toxin complexes. A general model of action has been proposed, in which the toxin complex binds to the cell surface via the A protein, is endocytosed, and subsequently forms a pH-triggered channel, allowing the translocation of C into the cytoplasm, where it can cause cytoskeletal disruption in both insect and mammalian cells(5). Toxin complexes have been visualized using single-particle electron microscopy(6,7), but no high-resolution structures of the components are available, and the role of the B protein in the mechanism of toxicity remains unknown. Here we report the three-dimensional structure of the complex formed between the B and C proteins, determined to 2.5 angstrom by X-ray crystallography. These proteins assemble to form an unprecedented, large hollow structure that encapsulates and sequesters the cytotoxic, C-terminal region of the C protein like the shell of an egg. The shell is decorated on one end by a beta-propeller domain, which mediates attachment of the B-C heterodimer to the A protein in the native complex. The structure reveals how C auto-proteolyses when folded in complex with B. The C protein is the first example, to our knowledge, of a structure that contains rearrangement hotspot (RHS) repeats(8), and illustrates a marked structural architecture that is probably conserved across both this widely distributed bacterial protein family and the related eukaryotic tyrosine-aspartate (YD)-repeat-containing protein family, which includes the teneurins(9). The structure provides the first clues about the function of these protein repeat families, and suggests a generic mechanism for protein encapsulation and delivery
    corecore