3 research outputs found

    Development of an Algorithm to Train Artificial Neural Networks for Intelligent Decision Support Systems

    Full text link
    The algorithm to train artificial neural networks for intelligent decision support systems has been constructed. A distinctive feature of the proposed algorithm is that it conducts training not only for synaptic weights of an artificial neural network, but also for the type and parameters of membership function. In case of inability to ensure the assigned quality of functioning of artificial neural networks due to training of parameters of artificial neural network, the architecture of artificial neural networks is trained. The choice of the architecture, type and parameters of membership function occurs taking into consideration the computation resources of the facility and taking into consideration the type and the amount of information entering the input of an artificial neural network. In addition, when using the proposed algorithm, there is no accumulation of an error of artificial neural networks training as a result of processing the information entering the input of artificial neural networks.Development of the proposed algorithm was predetermined by the need to train artificial neural networks for intelligent decision support systems in order to process more information given the unambiguity of decisions being made. The research results revealed that the specified training algorithm provides on average 16–23 % higher the efficiency of training artificial neural networks training that is on average by 16–23 % higher and does not accumulate errors in the course of training. The specified algorithm will make it possible to conduct training of artificial neural networks; to determine effective measures to enhance the efficiency of functioning of artificial neural networks. The developed algorithm will also enable the improvement of the efficiency of functioning of artificial neural networks due to training the parameters and the architecture of artificial neural networks. The proposed algorithm reduces the use of computational resources of decision support systems. The application of the developed algorithm makes it possible to work out the measures aimed at improving the effectiveness of training artificial neural networks and to increase the efficiency of information processin

    Development of an Improved Method for Finding A Solution for Neuro-fuzzy Expert Systems

    Get PDF
    Nowadays, artificial intelligence has entered into all spheres of human activity. However, there are some problems in the analysis of objects, for example, there is a priori uncertainty about the state of objects and the analysis takes place in a difficult situation against the background of intentional (natural) interference and uncertainty. The best solution in this situation is to integrate with the data analysis of information systems and artificial neural networks. This paper develops an improved method for finding solutions for neuro-fuzzy expert systems. The proposed method allows increasing the efficiency and reliability of making decisions about the state of the object. Increased efficiency is achieved through the use of evolving neuro-fuzzy artificial neural networks, as well as an improved procedure for their training. Training of evolving neuro-fuzzy artificial neural networks is due to learning their architecture, synaptic weights, type and parameters of the membership function, as well as the application of the procedure of reducing the dimensionality of the feature space. The analysis of objects also takes into account the degree of uncertainty about their condition. In the proposed method, when searching for a solution, the same conditions are calculated once, which speeds up the rule revision cycle and instead of the same conditions of the rules, references to them are used. This reduces the computational complexity of decision-making and does not accumulate errors in the training of artificial neural networks as a result of processing the information coming to the input of artificial neural networks. The use of the proposed method was tested on the example of assessing the state of the radio-electronic environment. This example showed an increase in the efficiency of assessment at the level of 20–25 % by the efficiency of information processin

    Development of an Improved Method for Finding A Solution for Neuro-fuzzy Expert Systems

    Full text link
    Nowadays, artificial intelligence has entered into all spheres of human activity. However, there are some problems in the analysis of objects, for example, there is a priori uncertainty about the state of objects and the analysis takes place in a difficult situation against the background of intentional (natural) interference and uncertainty. The best solution in this situation is to integrate with the data analysis of information systems and artificial neural networks. This paper develops an improved method for finding solutions for neuro-fuzzy expert systems. The proposed method allows increasing the efficiency and reliability of making decisions about the state of the object. Increased efficiency is achieved through the use of evolving neuro-fuzzy artificial neural networks, as well as an improved procedure for their training. Training of evolving neuro-fuzzy artificial neural networks is due to learning their architecture, synaptic weights, type and parameters of the membership function, as well as the application of the procedure of reducing the dimensionality of the feature space. The analysis of objects also takes into account the degree of uncertainty about their condition. In the proposed method, when searching for a solution, the same conditions are calculated once, which speeds up the rule revision cycle and instead of the same conditions of the rules, references to them are used. This reduces the computational complexity of decision-making and does not accumulate errors in the training of artificial neural networks as a result of processing the information coming to the input of artificial neural networks. The use of the proposed method was tested on the example of assessing the state of the radio-electronic environment. This example showed an increase in the efficiency of assessment at the level of 20–25 % by the efficiency of information processin
    corecore