90 research outputs found

    Effects of water quality in Bassenthwaite Lake on anglers' catches of salmon and sea-trout in the River Derwent

    Get PDF
    This is the report on the Effects of Water Quality in the Bassenthwaite Lake on Anglers Catches of Salmon and Sea-trout in the River Derwent April 1993 by the Institute of Freshwater Ecology. An analysis of the catch statistics for salmon and sea-trout in the Rivers Derwent and Cocker was undertaken in relation to available information on the algal water quality in Bassenthwaite Lake to test the hypothesis that poor catch returns were associated with a deterioration of water quality within the lake. Analysis of the catch statistics failed to reveal any correlation between water quality and catch returns for either species of fish and it is concluded that any water deterioration in Bassenthwaite Lake has not caused any major damage to the salmon and sea trout fisheries of the Derwent/Cocker system. This conclusion is supported by the analysis of the Windermere/Leven and Crake system, where no correlation could be found between lake water quality and downstream catches of migratory salmonid fish. However, the possibility still exists and such an effect might be detected by further field work on the macroinvertebrates and on the composition of potential salmonid spawning in the area

    Nitric Oxide and Other Molecules: Molecular Modeling and Low-frequency Exploration Using the Murchison Widefield Array

    Get PDF
    We present new molecular modeling for 14NO and 15NO and a deep, blind molecular line survey at low radio frequencies (99-129 MHz). This survey is the third in a series completed with the Murchison Widefield Array (MWA), but in comparison with the previous surveys, uses 4 times more data (17 hr versus 4 hr) and is 3 times better in angular resolution (1′ versus 3′). The new molecular modeling for nitric oxide and its main isotopologue has seven transitions within the MWA frequency band (although we also present the higher-frequency transitions). Although we did not detect any new molecular lines at a limit of 0.21 Jy beam-1, this work is an important step in understanding the data processing challenges for the future Square Kilometre Array and places solid limits on what is expected in the future of low-frequency surveys. The modeling can be utilized for future searches of nitric oxide

    Transitions between Inherent Structures in Water

    Full text link
    The energy landscape approach has been useful to help understand the dynamic properties of supercooled liquids and the connection between these properties and thermodynamics. The analysis in numerical models of the inherent structure (IS) trajectories -- the set of local minima visited by the liquid -- offers the possibility of filtering out the vibrational component of the motion of the system on the potential energy surface and thereby resolving the slow structural component more efficiently. Here we report an analysis of an IS trajectory for a widely-studied water model, focusing on the changes in hydrogen bond connectivity that give rise to many IS separated by relatively small energy barriers. We find that while the system \emph{travels} through these IS, the structure of the bond network continuously modifies, exchanging linear bonds for bifurcated bonds and usually reversing the exchange to return to nearly the same initial configuration. For the 216 molecule system we investigate, the time scale of these transitions is as small as the simulation time scale (1\approx 1 fs). Hence for water, the transitions between each of these IS is relatively small and eventual relaxation of the system occurs only by many of these transitions. We find that during IS changes, the molecules with the greatest displacements move in small ``clusters'' of 1-10 molecules with displacements of 0.020.2\approx 0.02-0.2 nm, not unlike simpler liquids. However, for water these clusters appear to be somewhat more branched than the linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system found by Glotzer and her collaborators.Comment: accepted in PR

    The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory

    Full text link
    We give a new theoretical basis for examination of the presence of the Kerr black hole (KBH) or the Kerr naked singularity (KNS) in the central engine of different astrophysical objects around which astrophysical jets are typically formed: X-ray binary systems, gamma ray bursts (GRBs), active galactic nuclei (AGN), etc. Our method is based on the study of the exact solutions of the Teukolsky master equation for electromagnetic perturbations of the Kerr metric. By imposing original boundary conditions on the solutions so that they describe a collimated electromagnetic outflow, we obtain the spectra of possible {\em primary jets} of radiation, introduced here for the first time. The theoretical spectra of primary electromagnetic jets are calculated numerically. Our main result is a detailed description of the qualitative change of the behavior of primary electromagnetic jet frequencies under the transition from the KBH to the KNS, considered here as a bifurcation of the Kerr metric. We show that quite surprisingly the novel spectra describe linearly stable primary electromagnetic jets from both the KBH and the KNS. Numerical investigation of the dependence of these primary jet spectra on the rotation of the Kerr metric is presented and discussed.Comment: 18 pages, 35 figures, LaTeX file. Final version. Accepted for publication in Astrophysics and Space Science. Amendments. Typos corrected. Novel notion -"primary jet" is introduced. New references and comments adde

    Academic freedom: in justification of a universal ideal

    Get PDF
    This paper examines the justification for, and benefits of, academic freedom to academics, students, universities and the world at large. The paper surveys the development of the concept of academic freedom within Europe, more especially the impact of the reforms at the University of Berlin instigated by Wilhelm von Humboldt. Following from this, the paper examines the reasons why the various facets of academic freedom are important and why the principle should continue to be supported

    GRB 010921: Discovery of the first high energy transient explorer afterglow

    Get PDF
    We report the discovery of the optical and radio afterglow of GRB 010921, the first gamma-ray burst afterglow to be found from a localization by the High Energy Transient Explorer satellite. We present optical spectroscopy of the host galaxy, which we find to be a dusty and apparently normal star-forming galaxy at z = 0.451. The unusually steep optical spectral slope of the afterglow can be explained by heavy extinction, Av > 0.5 mag, along the line of sight to the GRB. Dust with similar Av for the host galaxy as a whole appears to be required by the measurement of a Balmer decrement in the spectrum of the host galaxy

    The unusually long duration gamma-ray burst GRB 000911: Discovery of the afterglow and host galaxy

    Get PDF
    Of all the well-localized gamma-ray bursts, GRB 000911 has the longest duration (T90 = 500 s) and ranks in the top 1% of BATSE bursts for fluence. Here we report the discovery of the afterglow of this unique burst. In order to simultaneously fit our radio and optical observations, we are required to invoke a model involving a hard electron distribution, p ∼ 1.5, and a jet-break time less than 1.5 days. A spectrum of the host galaxy taken 111 days after the burst reveals a single emission line, interpreted as [011] at a redshift z = 1.0585, and a continuum break that we interpret as the Balmer limit at this redshift. Despite the long 790, the afterglow of GRB 000911 is not unusual in any other way when compared to the set of afterglows studied to date. We conclude that the duration of the GRB plays little part in determining the physics of the afterglow

    The unusually long duration gamma-ray burst GRB 000911: Discovery of the afterglow and host galaxy

    Get PDF
    Of all the well-localized gamma-ray bursts, GRB 000911 has the longest duration (T90 = 500 s) and ranks in the top 1% of BATSE bursts for fluence. Here we report the discovery of the afterglow of this unique burst. In order to simultaneously fit our radio and optical observations, we are required to invoke a model involving a hard electron distribution, p ∼ 1.5, and a jet-break time less than 1.5 days. A spectrum of the host galaxy taken 111 days after the burst reveals a single emission line, interpreted as [011] at a redshift z = 1.0585, and a continuum break that we interpret as the Balmer limit at this redshift. Despite the long 790, the afterglow of GRB 000911 is not unusual in any other way when compared to the set of afterglows studied to date. We conclude that the duration of the GRB plays little part in determining the physics of the afterglow

    Detection of a supernova signature associated with GRB 011121

    Get PDF
    Using observations from an extensive monitoring campaign with the Hubble Space Telescope, we present the detection of an intermediate-time flux excess that is redder in color relative to the afterglow of GRB 011121, currently distinguished as the gamma-ray burst with the lowest known redshift. The red "bump," which exhibits a spectral rollover at ∼7200 A, is well described by a redshifted Type le supernova that occurred approximately at the same time as the gamma-ray burst event. The inferred luminosity is about half that of the bright supernova SN 1998bw. These results serve as compelling evidence for a massive star origin of long-duration gamma-ray bursts. Models that posit a supernova explosion weeks to months preceding the gamma-ray burst event are excluded by these observations. Finally, we discuss the relationship between spherical core-collapse supernovae and gamma-ray bursts
    corecore