2,348 research outputs found
Berry's phase contribution to the anomalous Hall effect of gadolinium
When conduction electrons are forced to follow the local spin texture, the
resulting Berry phase can induce an anomalous Hall effect (AHE). In gadolinium,
as in double-exchange magnets, the exchange interaction is mediated by the
conduction electrons and the AHE may therefore resemble that of chromium
dioxide and other metallic double-exchange ferromagnets. The Hall resistivity,
magnetoresistance, and magnetization of single crystal gadolinium were measured
in fields up to 30 T. Measurements between 2 K and 400 K are consistent with
previously reported data. A scaling analysis for the Hall resistivity as a
function of the magnetization suggests the presence of a Berry's-phase
contribution to the anomalous Hall effect.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Anomalous Fermi Liquid Behavior of Overdoped High-Tc Superconductors
According to a generic temperature vs. carrier-doping (T-p) phase diagram of
high-temperature superconductors it has been proposed that as doping increases
to the overdoped region they approach gradually a conventional (canonical)
Fermi Liquid. However, Hall effect measurements in several systems reported by
different authors show a still strong \emph{T}-dependence in overdoped samples.
We report here electrical transport measurements of
Y_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7-delta} thin films presenting a temperature
dependence of the Hall constant, R_H, which does not present a gradual
transition towards the T-independent behavior of a canonical Fermi Liquid.
Instead, the T-dependence passes by a minimum near optimal doping and then
increases again in the overdoped region. We discuss the theoretical predictions
from two representative Fermi Liquid models and show that they can not give a
satisfactory explanation to our data. We conclude that this region of the phase
diagram in YBCO, as in most HTSC, is not a canonical Fermi Liquid, therefore we
call it Anomalous Fermi Liquid.Comment: 9 pages, 12 figures, to be published in Phys. Rev.
Submicrosecond comparison of international clock synchronization by VLBI and the NTS satellite
The intercontinental clock synchronization capabilities of Very Long Baseline Interferometry (VLBI) and the Navigation Technology Satellite (NTS) were compared using both methods to synchronize the Cesium clocks at the NASA Deep Space Net complexes at Madrid, Spain and Goldstone, California. Verification of the accuracy of both systems was examined. The VLBI experiments used the Wideband VLBI Data Acquisition System developed at the NASA Jet Propulsion Laboratory. The NTS Satellites were designed and built by the Naval Research Laboratory used with NTS Timing Receivers developed by the Goddard Space Flight Center. The two methods agreed at about the one-half microsecond level
Superconducting d-wave junctions: The disappearance of the odd ac components
We study voltage-biased superconducting planar d-wave junctions for arbitrary
transmission and arbitrary orientation of the order parameters of the
superconductors. For a certain orientation of the superconductors the odd ac
components disappear, resulting in a doubling of the Josephson frequency. We
study the sensitivity of this disappearance to orientation and compare with
experiments on grain boundary junctions. We also discuss the possibility of a
current flow parallel to the junction.Comment: 5 pages, 3 figure
Laws of large numbers for periodically and almost periodically correlated processes
AbstractThis paper gives results related to and including laws of large numbers for (possibly non-harmonizable) periodically and almost periodically correlated processes. These results admit periodically correlated processes that are not continuous in quadratic mean. The idea of a stationarizing random shift is used to show that strong law results for weakly stationary processes may be used to obtain strong law results for such processes
Analytical and experimental study of stratification and liquid-ullage coupling, 1 June 1964 - 31 May 1965
Closed-form solution for stratification of subcooled fluids in containers subjected to heating, and for liquid-ullage vapor couplin
Unconventional Hall effect in oriented CaCoO thin films
Transport properties of the good thermoelectric misfit oxide
CaCoO are examined. In-plane resistivity and Hall resistance
measurements were made on epitaxial thin films which were grown on {\it c}-cut
sapphire substrates using the pulsed laser deposition technique. Interpretation
of the in-plane transport experiments relates the substrate-induced strain in
the resulting film to single crystals under very high pressure ( 5.5 GPa)
consistent with a key role of strong electronic correlation. They are confirmed
by the measured high temperature maxima in both resistivity and Hall
resistance. While hole-like charge carriers are inferred from the Hall effect
measurements over the whole investigated temperature range, the Hall resistance
reveals a non monotonic behavior at low temperatures that could be interpreted
with an anomalous contribution. The resulting unconventional temperature
dependence of the Hall resistance seems thus to combine high temperature
strongly correlated features above 340 K and anomalous Hall effect at low
temperature, below 100 K.Comment: Submitted to Physical Review B (2005
Interplay between carrier and impurity concentrations in annealed GaMnAs intrinsic anomalous Hall Effect
Investigating the scaling behavior of annealed GaMnAs anomalous
Hall coefficients, we note a universal crossover regime where the scaling
behavior changes from quadratic to linear, attributed to the anomalous Hall
Effect intrinsic and extrinsic origins, respectively. Furthermore, measured
anomalous Hall conductivities when properly scaled by carrier concentration
remain constant, equal to theoretically predicated values, spanning nearly a
decade in conductivity as well as over 100 K in T. Both the qualitative
and quantitative agreement confirms the validity of new equations of motion
including the Berry phase contributions as well as tunablility of the intrinsic
anomalous Hall Effect.Comment: 4 pages, 5 figure
Eliminating the Abattoir Pen Lairages to Decrease the Prevalence of Salmonella in Cull Sows
The study objective, to determine the role of abattoir antemortem pens in preharvest Salmonella enterica contamination, was conducted over 4 sampling periods, February-April 2002. A total of 40 sows were selected for each period at the same collection point and transported to the abattoir. Twenty (20) were unloaded and sent directly to harvest and 20 held in antemortem pen for 2 h before harvest. Samples collected included ileocecal and subiliac lymph nodes, cecal and transverse colon contents, pre-rinse carcass sponge swabs for the right and left carcass sections and chopped meat blocks composited from these carcasses. The percentage of positive samples (all tissues) and cecal content from sows held in the antemortem pens (59%, 55 %, respectively) were significantly higher (P \u3c 0.05) compared to direct delivered (44%, 39 % respectively). This study demonstrates that normal antemortem holding practices contributed to increased Salmonella enterica contamination of the digestive tract
Anomalous Hall effect in Rashba two-dimensional electron systems based on narrow-band semiconductors: side-jump and skew scattering mechanisms
We employ a helicity-basis kinetic equation approach to investigate the
anomalous Hall effect in two-dimensional narrow-band semiconductors considering
both Rashba and extrinsic spin-orbit (SO) couplings, as well as a SO coupling
directly induced by an external driving electric field. Taking account of
long-range electron-impurity scattering up to the second Born approximation, we
find that the various components of the anomalous Hall current fit into two
classes: (a) side-jump and (b) skew scattering anomalous Hall currents. The
side-jump anomalous Hall current involves contributions not only from the
extrinsic SO coupling but also from the SO coupling due to the driving electric
field. It also contains a component which arises from the Rashba SO coupling
and relates to the off-diagonal elements of the helicity-basis distribution
function. The skew scattering anomalous Hall effect arises from the anisotropy
of the diagonal elements of the distribution function and it is a result of
both the Rashba and extrinsic SO interactions. Further, we perform a numerical
calculation to study the anomalous Hall effect in a typical InSb/AlInSb quantum
well. The dependencies of the side-jump and skew scattering anomalous Hall
conductivities on magnetization and on the Rashba SO coupling constant are
examined.Comment: 16 pages, 4 figures, accepted for publication in PR
- …