249 research outputs found
Use of CRISTA mesopause region temperatures for the intercalibration of gound-based instruments
Most available ground-based (GB) techniques for measuring temperatures in the upper mesosphere to lower thermosphere (or mesopause region) have systematic errors that are comparable to those of orbiting instruments. Determining these unknown biasses would normally require colocated observations that are only seldom feasible. Satellite measurements can be used as a ‘‘transfer standard’’ between GB observations that are not colocated. In this context, even with a reproducible or known bias in the satellite data, the comparison is still meaningful. Since Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures cover the mesopause region with very good accuracy (statistical errors do not exceed 1.5 K and systematic uncertainties range from about 3–7.5 K), they are quite suitable for this purpose. Because of the nearly constant precision over the height range of interest, also rotational temperatures of airglow emissions from different altitudes like the OH and O2 bands (or the OI 558 nm line) can be successfully compared with each other. In spite of the limited number of overpasses during the relatively short CRISTA missions, the feasibility of such an intercalibration is demonstrated for widely separated GB sites. Here, the results obtained for GB measurements at eight different sites, using CRISTA-1 and CRISTA-2 data, are presented. For OH temperatures, the standard deviation between the different instruments is only 5.4 K, confirming previous estimates.Fil: Scheer, Jurgen. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Reisin, Esteban Rodolfo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gusev, O. A.. University of Wuppertal; AlemaniaFil: French, W. J. R.. Australian Antarctic Division; AustraliaFil: Hernandez, G.. University of Washington; Estados UnidosFil: Huppi, R.. State University Of Utah; Estados UnidosFil: Ammosov, P.. Institute of Cosmophysical Research and Aeronomy; RusiaFil: Gavrilyeva, G. A.. Institute of Cosmophysical Research and Aeronomy; RusiaFil: Offermann, D.. University of Wuppertal; Alemani
The Effect of Preterm Birth on Thalamic and Cortical Development
Preterm birth is a leading cause of cognitive impairment in childhood and is associated with cerebral gray and white matter abnormalities. Using multimodal image analysis, we tested the hypothesis that altered thalamic development is an important component of preterm brain injury and is associated with other macro- and microstructural alterations. T1- and T2-weighted magnetic resonance images and 15-direction diffusion tensor images were acquired from 71 preterm infants at term-equivalent age. Deformation-based morphometry, Tract-Based Spatial Statistics, and tissue segmentation were combined for a nonsubjective whole-brain survey of the effect of prematurity on regional tissue volume and microstructure. Increasing prematurity was related to volume reduction in the thalamus, hippocampus, orbitofrontal lobe, posterior cingulate cortex, and centrum semiovale. After controlling for prematurity, reduced thalamic volume predicted: lower cortical volume; decreased volume in frontal and temporal lobes, including hippocampus, and to a lesser extent, parietal and occipital lobes; and reduced fractional anisotropy in the corticospinal tracts and corpus callosum. In the thalamus, reduced volume was associated with increased diffusivity. This demonstrates a significant effect of prematurity on thalamic development that is related to abnormalities in allied brain structures. This suggests that preterm delivery disrupts specific aspects of cerebral development, such as the thalamocortical system
Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report
BACKGROUND: After perinatal brain injury, clinico-anatomic correlations of functional deficits and brain plasticity remain difficult to evaluate clinically in the young infant. Thus, new non-invasive methods capable of early functional diagnosis are needed in young infants. CASE PRESENTATION: The visual system recovery in an infant with perinatal stroke is assessed by combining diffusion tensor imaging (DTI) and event-related functional MRI (ER-fMRI). All experiments were done at 1.5T. A first DTI experiment was performed at 12 months of age. At 20 months of age, a second DTI experiment was performed and combined with an ER-fMRI experiment with visual stimuli (2 Hz visual flash). At 20 months of age, ER-fMRI showed significant negative activation in the visual cortex of the injured left hemisphere that was not previously observed in the same infant. DTI maps suggest recovery of the optic radiation in the vicinity of the lesion. Optic radiations in the injured hemisphere are more prominent in DTI at 20 months of age than in DTI at 12 months of age. CONCLUSION: Our data indicate that functional cortical recovery is supported by structural modifications that concern major pathways of the visual system. These neuroimaging findings might contribute to elaborate a pertinent strategy in terms of diagnosis and rehabilitation
Methodological consensus on clinical proton MRS of the brain: Review and recommendations
© 2019 International Society for Magnetic Resonance in Medicine Proton MRS (1H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use
An accurate and interpretable model for siRNA efficacy prediction
BACKGROUND: The use of exogenous small interfering RNAs (siRNAs) for gene silencing has quickly become a widespread molecular tool providing a powerful means for gene functional study and new drug target identification. Although considerable progress has been made recently in understanding how the RNAi pathway mediates gene silencing, the design of potent siRNAs remains challenging. RESULTS: We propose a simple linear model combining basic features of siRNA sequences for siRNA efficacy prediction. Trained and tested on a large dataset of siRNA sequences made recently available, it performs as well as more complex state-of-the-art models in terms of potency prediction accuracy, with the advantage of being directly interpretable. The analysis of this linear model allows us to detect and quantify the effect of nucleotide preferences at particular positions, including previously known and new observations. We also detect and quantify a strong propensity of potent siRNAs to contain short asymmetric motifs in their sequence, and show that, surprisingly, these motifs alone contain at least as much relevant information for potency prediction as the nucleotide preferences for particular positions. CONCLUSION: The model proposed for prediction of siRNA potency is as accurate as a state-of-the-art nonlinear model and is easily interpretable in terms of biological features. It is freely available on the web a
Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma
BACKGROUND: North central China has some of the highest rates of esophageal squamous cell carcinoma in the world with cumulative mortality surpassing 20%. Mitochondrial DNA (mtDNA) accumulates more mutations than nuclear DNA and because of its high abundance has been proposed as a early detection device for subjects with cancer at various sites. We wished to examine the prevalence of mtDNA mutation and polymorphism in subjects from this high risk area of China. METHODS: We used DNA samples isolated from tumors, adjacent normal esophageal tissue, and blood from 21 esophageal squamous cell carcinoma cases and DNA isolated from blood from 23 healthy persons. We completely sequenced the control region (D-Loop) from each of these samples and used a PCR assay to assess the presence of the 4977 bp common deletion. RESULTS: Direct DNA sequencing revealed that 7/21 (33%, 95% CI = 17–55%) tumor samples had mutations in the control region, with clustering evident in the hyper-variable segment 1 (HSV1) and the homopolymeric stretch surrounding position 309. The number of mutations per subject ranged from 1 to 16 and there were a number of instances of heteroplasmy. We detected the 4977 bp 'common deletion' in 92% of the tumor and adjacent normal esophageal tissue samples examined, whereas no evidence of the common deletion was found in corresponding peripheral blood samples. CONCLUSIONS: Control region mutations were insufficiently common to warrant attempts to develop mtDNA mutation screening as a clinical test for ESCC. The common deletion was highly prevalent in the esophageal tissue of cancer cases but absent from peripheral blood. The potential utility of the common deletion in an early detection system will be pursued in further studies
High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors
<p>Abstract</p> <p>Background</p> <p>DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.</p> <p>Methods</p> <p>We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.</p> <p>Results</p> <p>Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, <it>PVT1</it>, but not <it>MYC</it>, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators <it>PRKCI </it>and <it>ECT2 </it>were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.</p> <p>Conclusion</p> <p>These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.</p
Global and Regional Differences in Brain Anatomy of Young Children Born Small for Gestational Age
In children who are born small for gestational age (SGA), an adverse intrauterine environment has led to underdevelopment of both the body and the brain. The delay in body growth is (partially) restored during the first two years in a majority of these children. In addition to a negative influence on these physical parameters, decreased levels of intelligence and cognitive impairments have been described in children born SGA. In this study, we used magnetic resonance imaging to examine brain anatomy in 4- to 7-year-old SGA children with and without complete bodily catch-up growth and compared them to healthy children born appropriate for gestational age. Our findings demonstrate that these children strongly differ on brain organisation when compared with healthy controls relating to both global and regional anatomical differences. Children born SGA displayed reduced cerebral and cerebellar grey and white matter volumes, smaller volumes of subcortical structures and reduced cortical surface area. Regional differences in prefrontal cortical thickness suggest a different development of the cerebral cortex. SGA children with bodily catch-up growth constitute an intermediate between those children without catch-up growth and healthy controls. Therefore, bodily catch-up growth in children born SGA does not implicate full catch-up growth of the brain
Genome profiling of ERBB2-amplified breast cancers
<p>Abstract</p> <p>Background</p> <p>Around 20% of breast cancers (BC) show <it>ERBB2 </it>gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies.</p> <p>Methods</p> <p>We defined the high resolution genome and gene expression profiles of 54 <it>ERBB2</it>-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions.</p> <p>Results</p> <p>First, we identified the <it>ERBB2</it>-<it>C17orf37</it>-<it>GRB7 </it>genomic segment as the minimal common 17q12-q21 amplicon, and <it>CRKRS </it>and <it>IKZF3 </it>as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in <it>ERBB2</it>-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) <it>ERBB2</it>-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- <it>ERBB2</it>-amplified BCs, and <it>PVT1 </it>and <it>TRPS1 </it>were candidate oncogenes associated with ER+ <it>ERBB2</it>-amplified BCs. The size of the <it>ERBB2 </it>amplicon was different in inflammatory (IBC) and non-inflammatory BCs. <it>ERBB2</it>-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between <it>ERBB2 </it>gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence response of <it>ERBB2</it>-positive BCs to inhibitors. FOXA1 was frequently coexpressed with ERBB2 but its expression did not impact on the outcome of patients with <it>ERBB2</it>-amplified tumors.</p> <p>Conclusion</p> <p>We have shown that ER+ and ER- <it>ERBB2</it>-amplified BCs are different, distinguished <it>ERBB2 </it>amplicons in IBC and non-IBC, and identified genomic features that may be useful in the design of alternative therapeutical strategies.</p
- …