46 research outputs found

    EMIFF: Enhanced Multi-scale Image Feature Fusion for Vehicle-Infrastructure Cooperative 3D Object Detection

    Full text link
    In autonomous driving, cooperative perception makes use of multi-view cameras from both vehicles and infrastructure, providing a global vantage point with rich semantic context of road conditions beyond a single vehicle viewpoint. Currently, two major challenges persist in vehicle-infrastructure cooperative 3D (VIC3D) object detection: 1)1) inherent pose errors when fusing multi-view images, caused by time asynchrony across cameras; 2)2) information loss in transmission process resulted from limited communication bandwidth. To address these issues, we propose a novel camera-based 3D detection framework for VIC3D task, Enhanced Multi-scale Image Feature Fusion (EMIFF). To fully exploit holistic perspectives from both vehicles and infrastructure, we propose Multi-scale Cross Attention (MCA) and Camera-aware Channel Masking (CCM) modules to enhance infrastructure and vehicle features at scale, spatial, and channel levels to correct the pose error introduced by camera asynchrony. We also introduce a Feature Compression (FC) module with channel and spatial compression blocks for transmission efficiency. Experiments show that EMIFF achieves SOTA on DAIR-V2X-C datasets, significantly outperforming previous early-fusion and late-fusion methods with comparable transmission costs.Comment: 7 pages, 8 figures. Accepted by ICRA 2024. arXiv admin note: text overlap with arXiv:arXiv:2303.1097

    Impact of quenched random fields on the ferroelectric-to-relaxor crossover in the solid solution (1−x)BaTiO3−xDyFeO3

    Get PDF
    Lead-based perovskite relaxor ferroelectrics are widely used as materials for numerous applications due to their extraordinary dielectric, piezoelectric, and electrostrictive properties. While the mechanisms of relaxor behavior are disputable, the importance of quenched (static) random electric fields created at nanoscale by the disordered heterovalent cations has been well recognized. Meanwhile, an increasing amount of scientific and technological efforts has been concentrated on lead-free perovskites, in particular, solid solutions of classical ferroelectric BaTiO 3 (BT), which better meet ecological requirements. Among BT-based solutions the homovalent systems are elaborately studied where strong random electric fields are absent, while the solubility limit of heterovalent solutions is typically too low to fully reveal the peculiarities of relaxor behavior. In this paper, we prepare a perovskite solid solution system (1 − x )Ba 2 + Ti 4 + O 3 − x Dy 3 + Fe 3 + O 3 (0 x 0 . 3) and study it as a model heterovalent lead-free system. We determine crystal structure, ferroelectric, and dielectric properties of ceramics in a wide range of temperatures and concentrations, construct a phase diagram, and find and analyze the concentration-induced crossover from normal ferroelectric to relaxor behavior. We demonstrate that quenched random electric fields of moderate strength promote the ferroelectric-to-relaxor crossover, but do not change qualitatively the peculiarities of relaxor behavior, while strong enough fields destroy the relaxor state, so that the material becomes an ordinary linear dielectric. The experimental results are compared with the predictions of known theories of relaxor ferroelectricity

    Governing effects of melt viscosity on fire performances of polylactide and its fire-retardant systems

    Get PDF
    Extreme flammability of polylactide (PLA) has restricted its real-world applications. Traditional research only focuses on developing new effective fire retardants for PLA without considering the effect of melt viscosity on its fire performances. To fill the knowledge gap, a series of PLA matrices of varied melt flow index (MFI) with and without fire retardants are chosen to examine how melt viscosity affects its fire performances. Our results show that the MFI has a governing impact on fire performances of pure PLA and its fire-retardant systems if the samples are placed vertically during fire testing. PLA with higher MFI values achieves higher limiting oxygen index (LOI) values, and a lower loading level of fire retardants is required for PLA to pass a UL-94 V-0 rating. This work unveils the correlation between melt viscosity and their fire performance and offers a practical guidance for creating flame retardant PLA to extend its applications

    Design and Practice of Innovative Entrepreneurship Elements in the Course "Comprehensive Utilization of Grain and Oil Processing By-products" under the Guidance of Provincial First-class Discipline

    Get PDF
    Constructing the first-class undergraduate specialty, deepening curriculum reform, incorporating innovation and entrepreneurship education throughout the entire talent development process, and consistently enhancing the standard of innovation and entrepreneurship education are crucial approaches to fostering scientific and technological aptitude among college students. This study, according to the nature and characteristics of the course "Comprehensive Utilization of Grain and Oil Processing By-Products", focusing on the objectives of course teaching, under the guidance of the concept of innovation and entrepreneurship education, aims to explore the development and implementation of a practical case teaching method tailored to grain engineering students within the framework of the provincial first-class undergraduate specialty construction. By improving challenges such as lecture-based teaching, limited practical links, and one-dimensional assessment, a collaborative education platform of 'trinity' innovation and entrepreneurship teaching is proposed based on the construction idea of "classroom-experiment-practice". This platform emphasizes several improvement initiatives, such as incorporating industry case-inspired teaching, conducting classroom presentations, fostering the development of innovative experimental designs in small groups, cultivating the spirit of scientists, expanding the teaching of science and innovation competitions on the extracurricular activities, implementing multi-dimensional assessment methods, and establishing continuity mechanisms. Our goal is to establish a collaborative platform that nurtures innovation and entrepreneurship through the professional curriculum. Ultimately, this platform seeks to promote balanced development between professional knowledge and entrepreneurial skills, elevating the cultivation of innovative talents in grain engineering

    A preliminary study on bamboo-timber composite columns under axial compression

    Get PDF
    Bamboo–timber composite columns hold significant promise as bio-based structural elements. However, research in this area remains limited, especially concerning modern buckling analysis methods that incorporate bio-based constitutive models of engineered bamboo and timber materials. This study aims to address this gap by proposing a proof-of-concept analytical framework based on component-based strategy for buckling analysis, utilising piecewise bio-based material constitutive models as the guide rail for its strain-stage-based component split-up. Preliminary experimental validation was performed to evaluate the feasibility of using component-based analysis to estimate the overall buckling resistance of both composite and non-composite bamboo and timber columns. This initial study offers an alternative analytical approach for estimating the buckling resistance of bio-composite columns and establishes a set of conceptual guidelines and indicative parameters for the experimental design of future research

    Synthesis and Characterization of Ferroelectric and Antiferroelectric Complex Perovskite Systems

    Get PDF
    Single crystals of Pb(Sc1/2Nb1/2)O3 (PSN) were grown by a high-temperature solution method using (PbO + B2O3) as flux. X-ray diffraction (XRD) indicates a pure perovskite phase without B-site ordering. Polarized light microscopy shows that the crystals are of rhombohedral symmetry at room temperature and become cubic at 112 oC on heating which is the Curie temperature (TC). A relaxor-to-ferroelectric phase transition is confirmed by dielectric spectroscopy. Frequency-dependent permittivity is also observed, revealing relaxor behavior. Poling the crystal at room temperature does not change TC but suppresses the permittivity. A typical ferroelectric hysteresis loop is obtained at room temperature, indicating the ferroelectric nature of the PSN crystal.A new antiferroelectric solid solution ceramics of (1-x)PbZrO3-xPb(Zn1/2W1/2)O3 [(1-x)PZ-xPZnW, with x = 0 - 10%] has been prepared by conventional solid state reaction method. XRD reveals the perovskite structure of the (1-x)PZ-xPZnW ceramics. TC decreases when the percentage of PZnW increases. Meanwhile, another transition related to the transformation from antiferroelectric (AFE) to an intermediate ferroelectric (FE) phase was observed and its transition temperature (TAFE-FE) decreases from 213 oC for x = 0 to 58 oC for x = 0.10. A typical FE hysteresis loop was obtained, indicating the FE nature of the intermediate phase.The 0.97PbZrO3-0.03Pb(Zn1/2W1/2)O3 (97%PZ-3%PZnW) ceramic was used to study the intermediate FE phase. The temperature dependence of dielectric permittivity was studied. TC on cooling and heating are both 212 oC, indicating a second-order phase transition. Another phase transition below TC was observed, from the AFE phase at room temperature to an intermediate phase at higher temperature. This transition shows thermal hysteresis on cooling and heating, representing a first-order phase transition. Within the temperature range of the intermediate phase, ferroelectric hysteresis loops were displayed and a non-centrosymmetric structure was revealed by second harmonic generation, which indicates the FE nature for the intermediate phase. High resolution XRD and the subsequent refinement results show that the intermediate FE phase is rhombohedral (R3m) and the AFE phase is orthorhombic (Pbam). A phase diagram of the (1-x)PbZrO3-xPb(Zn1/2W1/2)O3 solid solution has been established

    Solid Wastes Toward Flame Retardants for Polymeric Materials: A Review

    Full text link
    <jats:p>It has been significant yet challenging to recycle and reuse different kinds of wastes because of their mass production within society. Many efforts have been conducted to reuse wastes in different fields. Interestingly, some wastes have been employed to replace traditional petroleum-based flame retardants for polymeric materials. This review focuses on the recent development of waste flame retardants and their impacts on thermal stability, flame retardancy, and smoke suppression of polymers, followed by representative flame-retardant mechanisms. Finally, the key challenges associated with waste flame retardants are presented, and some future perspectives are proposed.</jats:p&gt

    Sulfonated Block Ionomers Enable Transparent, Fire-Resistant, Tough yet Strong Polycarbonate

    Full text link
    Polycarbonate (PC) features high transparency and balanced mechanical properties, and thus is being growingly used for producing many high-end products, e.g., construction facades, sensors and 5G equipment. For these applications, PC is required to combine satisfactory fire retardancy and great toughness while retain its mechanical strength and optical transparency. However, existing either fire retardants or toughening agents fail to enable PC to achieve such a required performance portfolio due to their improper molecular designs. To overcome this challenge, we, herein, rationally design a series of sulfonated ionomeric fire retardants (sSEBS-M, M = Na+, Zn2+, Ce3+) by sulfonating and neutralizing styrene-ethylene-butylene-styrene (SEBS). The sSEBS-M can be well-dispersed within the PC matrix with phase domain sizes less than 500 nm. Chemical structures of sSEBS-M and their dispersion within the polymer matrix strongly correlate to their comprehensive performances in PC. Among three sSEBS-M ionomers, sSEBS-Ce endows PC with better comprehensive performances. With 1.5 wt% of sSEBS-Ce, the final PC achieves a high limiting oxygen index of 33.5% and a desired UL-94 V-0 rating, in addition to a 53% reduction in peak heat release rate and a comparable transparency to virgin PC. Moreover, its impact toughness and ductility are enhanced by 40% and 116% with tensile strength well-preserved. The integrated performance portfolios are superior to previous counterparts. This work offers a novel strategy for the design of multifunctional ionomer-based fire retardants for creating high-performance PC and reveals its structure-composition-property relationship in PC, which will enable PC to realize its practical applications in above-mentioned industries

    The Potential Dual Role of H2.0-like Homeobox in the Tumorgenesis and Development of Colorectal Cancer and Its Prognostic Value

    Full text link
    Background. H2.0-like homeobox (HLX) is highly expressed in several hematopoietic malignancies. However, the role of HLX in the carcinogenesis and progression of colorectal cancer (CRC) patients has rarely been reported. Methods. In this study, the data were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. The diagnostic value of HLX was analyzed by the R package “pROC.” The overall survival was estimated using the “survival” and “survminer” packages. A nomogram was established to predict 1-, 3-, and 5-year overall survival of CRC patients. The CIBERSORT software was employed to calculate the relative proportions of 22 immune cells. Results. HLX expression was downregulated in CRC patients. Remarkably, HLX expression was increased with stage (stage I–stage III) of CRC, and the CRC patients with high HLX expression exhibited a poor prognosis. The promoter methylation level of HLX was prominently increased in CRC samples compared to paracancerous samples. We also found that the six miRNAs target HLX genes, leading to its downregulation, and HLX expression had a negative correlation with its downstream target gene BRI3BP in both CRC and normal samples. Finally, we found that the 12 immune infiltrating cells were observably different between high and low HLX expression groups. The HLX had a significant positive correlation with 8 immune checkpoints (PD-1 (PDCD1), CTLA4, PDL-1 (CD274), PDL-2 (PDCD1LG2), CD80, CD86, LAG3, and TIGIT) expressions. Conclusion. HLX probably played a carcinostasis role in the early stages of CRC but exhibited a cancer-promoting effect in the advanced stages. Meanwhile, HLX could serve as a reliable prognostic indicator for CRC

    DEV induce autophagy via the endoplasmic reticulum stress related unfolded protein response.

    Full text link
    Duck enteritis virus (DEV) can infect ducks, geese, and many other poultry species and leads to acute, septic and highly fatal infectious disease. Autophagy is an evolutionarily ancient pathway that plays an important role in many viral infections. We previously reported that DEV infection induces autophagy for its own benefit, but how this occurs remains unclear. In this study, endoplasmic reticulum (ER) stress was triggered by DEV infection, as demonstrated by the increased expression of the ER stress marker glucose-regulated protein 78 (GRP78) and the dilated morphology of the ER. Pathways associated with the unfolded protein response (UPR), including the PKR-like ER protein kinase (PERK) and inositol-requiring enzyme 1 (IRE1) pathways, but not the activating transcription factor 6 (ATF6) pathway, were activated in DEV-infected duck embryo fibroblast (DEF) cells. In addition, the knockdown of both PERK and IRE1 by small interfering RNAs (siRNAs) reduced the level of LC3-II and viral yields, which suggested that the PERK-eukaryotic initiation factor 2α (eIF2α) and IRE1-x-box protein1 (XBP1) pathways may contribute to DEV-induced autophagy. Collectively, these data offer new insight into the mechanisms of DEV -induced autophagy through activation of the ER stress-related UPR pathway
    corecore