2 research outputs found

    Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride

    No full text
    Breakdown strength is an important parameter for polymer dielectric, and introducing inorganic filler into the polymer matrix is an efficient method to improve the breakdown strength. In this work, graphitic carbon nitride nanosheets (CNNS) were ultrasonically exfoliated and coated with polydopamine to obtain modified nanosheets (DCNNS), and then polyimide (PI) composite films with various CNNS and DCNNS were prepared and compared. Owing to the abundant hydroxyl groups of polydopamine, good filler-polymer compatibility and uniform filler dispersion were achieved for PI/DCNNS composites. Both breakdown strength and dielectric constant were improved with the addition of either CNNS or DCNNS. However, at the same filler content, the PI/DCNNS composites exhibited higher breakdown strength and dielectric constant than the PI/CNNS. The PI composite with 0.5 wt% DCNNS showed the highest breakdown strength of ~300 kV/mm, increased by 67.6% as compared to the pure PI, while the PI/CNNS composite with the same filler content only increased by 14.5%

    Research on Improving the Partial Discharge Initial Voltage of SiC/EP Composites by Utilizing Filler Surface Modification and Nanointerface Interaction.

    No full text
    SiC/EP composites are promising insulating materials due to their high thermal conductivity, stable chemical properties, and nonlinear electrical conductivity. However, the compatibility of micron-sized SiC particles with the organic polymer matrix is poor, and defects such as air gaps may be introduced at the interface, which reduces the partial discharge resistance of the composite materials. In order to improve the partial discharge initial voltage (PDIV) of SiC/EP composites, in this paper, SiC/EP composites with different proportions were prepared by surface modification of filler and compound of micro/nano particles. Firstly, a method of secondary modification of SiC particles was proposed, which was first modified by alkali washing and then silane coupling agent KH560, and the effectiveness of the modification was verified. Therefore, the interface bonding ability between the filler and the matrix was improved, the air gap defects at the interface were reduced, and the PDIV of the composite material was improved. When the filling ratio is 10 wt%, the PDIV was enhanced by 13.75%, and when the filling ratio was further increased, the improvement was reduced. In contrast, the introduction of nanoparticles into the composites can effectively improve the PDIV of composite materials. In this study, nanoparticles were used to form a shell-core structure in epoxy resins to exert their huge specific surface area and active surface properties, thereby changing the overall crosslinking properties of the composites. Through experimental research, the optimal micro-nano particle compounding ratio was explored. Under the optimal mixing ratio, the PDIV of the composite material can be increased by more than 90%
    corecore