20,145 research outputs found

    Parametric study of optimized liquid-hydrogen thermal protection systems for nuclear interplanetary spacecraft. Volume 2 - Technical details Final report

    Get PDF
    Technical analyses and computer programs in support of optimization of liquid hydrogen thermal protection systems for nuclear Mars spacecraf

    Cluster phases of membrane proteins

    Full text link
    A physical scenario accounting for the existence of size-limited submicrometric domains in cell membranes is proposed. It is based on the numerical investigation of the counterpart, in lipidic membranes where proteins are diffusing, of the recently discovered cluster phases in colloidal suspensions. I demonstrate that the interactions between proteins, namely short-range attraction and longer-range repulsion, make possible the existence of stable small clusters. The consequences are explored in terms of membrane organization and diffusion properties. The connection with lipid rafts is discussed and the apparent protein diffusion coefficient as a function of their concentration is analyzed.Comment: 5 pages - enhanced versio

    Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations in the survival motor neuron 1 (SMN1) gene. Recent breakthroughs in preclinical research have highlighted several potential novel therapies for SMA, increasing the need for robust and sensitive clinical trial platforms for evaluating their effectiveness in human patient cohorts. Given that most clinical trials for SMA are likely to involve young children, there is a need for validated molecular biomarkers to assist with monitoring disease progression and establishing the effectiveness of therapies being tested. Proteomics technologies have recently been highlighted as a potentially powerful tool for such biomarker discovery. METHODS: We utilized label-free proteomics to identify individual proteins in pathologically-affected skeletal muscle from SMA mice that report directly on disease status. Quantitative fluorescent western blotting was then used to assess whether protein biomarkers were robustly changed in muscle, skin and blood from another mouse model of SMA, as well as in a small cohort of human SMA patient muscle biopsies. RESULTS: By comparing the protein composition of skeletal muscle in SMA mice at a pre-symptomatic time-point with the muscle proteome at a late-symptomatic time-point we identified increased expression of both Calreticulin and GRP75/Mortalin as robust indicators of disease progression in SMA mice. We report that these protein biomarkers were consistently modified in different mouse models of SMA, as well as across multiple skeletal muscles, and were also measurable in skin biopsies. Furthermore, Calreticulin and GRP75/Mortalin were measurable in muscle biopsy samples from human SMA patients. CONCLUSIONS: We conclude that label-free proteomics technology provides a powerful platform for biomarker identification in SMA, revealing Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers capable of reporting on disease progression in samples of muscle and skin

    Parametric study of optimized liquid-hydrogen thermal protection systems for nuclear interplanetary spacecraft. Volume 1 - Results and summary

    Get PDF
    Parametric study of optimized liquid hydrogen thermal protection systems for nuclear interplanetary spacecraf

    Understanding small music venues: a report by the Music Venue Trust

    Get PDF
    This report presents the findings of a research project undertaken by the Institute of Contemporary Music Performance (hereafter The Institute) investigating the experiences of small music venues in the UK. The project was commissioned by the Music Venue Trust (MVT) and funded by Arts Council England (ACE) via an allocation of a grant awarded to MVT (Grant for the Arts ref. 27555752) and by The Institute

    Place matters: but does local leadership?

    Get PDF
    The arrival of New Labour into Government witnessed the prominent re-emergence of place onto the policy agenda. This heralded a range of area-based-initiatives designed to both tackle neighbourhood forms of deprivation and to re-establish a sense of identity and connection between individuals and their local community. In terms of place-making, effective and inclusive participation, representation and leadership were all identified as prerequisites for the creation of sustainable communities . But how important is local leadership and strategic vision within local public service organisations in achieving the desired place-making outcomes? This paper examines the extent to which local leadership and strategic vision represents a significant factor in promoting higher levels of satisfaction, belonging, cohesion and participation across single tier councils in England. The ensuing empirical evidence raises significant questions not only about the importance of local leadership in place-making, but also the environmental and organizational factors that shape local places

    Monolithic Si bolometer array for the Caltech Submillimeter Observatory

    Get PDF
    We are developing a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. The camera will employ a monolithic Si bolometer array which was developed by Mosley et al. at the NASA Goddard Space Flight Center (GSFC). The camera will be cooled to a temperature of about 300 mK in a ^3He cryostat, and will operate primarily at wavelengths of 350 and 450 micrometers. We plan to use a bolometer array with 1 x 24 directly illuminated pixels, each pixel of dimension 1 x 2 mm^2, which is about half of the F/4 beam size at these wavelengths. Each pixel is 10 - 12 micrometers thick and is supported only by four thin Si legs formed by wet chemical etch. The pixels are doped n-type by phosphorus implantation, compensated by boron implantation. Signals from the bolometer pixels are first amplified by cryogenically cooled FETs. The signals are further amplified by room-temperature amplifiers and then separately digitized by 16 bit A/D converters with differential inputs. The outputs of the A/D converters are fed into a digital signal processing board via fiber-optic cables. The electronics and data acquisition system were designed by the Goddard group. We will report the status of this effort

    Characterization of a submillimeter high-angular-resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory

    Get PDF
    We constructed a 24-pixel bolometer camera operating in the 350- and 450-µm atmospheric windows for the Caltech Submillimeter Observatory (CSO). This instrument uses a monolithic silicon bolometer array that is cooled to approximately 300 mK by a single-shot 3 He refrigerator. First-stage amplification is provided by field-effect transistors at approximately 130 K. The sky is imaged onto the bolometer array by means of several mirrors outside the Dewar and a cold off-axis elliptical mirror inside the cryostat. The beam is defined by cold aperture and field stops, which eliminates the need for any condensing horns. We describe the instrument, present measurements of the physical properties of the bolometer array, describe the performance of the electronics and the data-acquisition system, and demonstrate the sensitivity of the instrument operating at the observatory. Approximate detector noise at 350 µm is 5 x 10^-15 W/√Hz, referenced to the entrance of the Dewar, and the CSO system noise-equivalent flux density is approximately 4 Jy/√Hz. These values are within a factor of 2.5 of the background limit
    corecore