1,087 research outputs found
Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency
© 2016 The Author(s).The gag gene is highly polymorphic across HIV-1 subtypes and contributes to susceptibility to protease inhibitors (PI), a critical class of antiretrovirals that will be used in up to 2 million individuals as second-line therapy in sub Saharan Africa by 2020. Given subtype C represents around half of all HIV-1 infections globally, we examined PI susceptibility in subtype C viruses from treatment-naïve individuals. PI susceptibility was measured in a single round infection assay of full-length, replication competent MJ4/gag chimeric viruses, encoding the gag gene and 142 nucleotides of pro derived from viruses in 20 patients in the Zambia-Emory HIV Research Project acute infection cohort. Ten-fold variation in susceptibility to PIs atazanavir and lopinavir was observed across 20 viruses, with EC50 s ranging 0.71-6.95 nM for atazanvir and 0.64-8.54 nM for lopinavir. Ten amino acid residues in Gag correlated with lopinavir EC50 (p < 0.01), of which 380 K and 389I showed modest impacts on in vitro drug susceptibility. Finally a significant relationship between drug susceptibility and replication capacity was observed for atazanavir and lopinavir but not darunavir. Our findings demonstrate large variation in susceptibility of PI-naïve subtype C viruses that appears to correlate with replication efficiency and could impact clinical outcomes
A case study evaluation of implementation of a care pathway to support normal birth in one English birth centre: anticipated benefits and unintended consequences
Background: The policy drive for the UK National Health Service (NHS) has focused on the need for high quality services informed by evidence of best practice. The introduction of care pathways and protocols to standardise care and support implementation of evidence into practice has taken place across the NHS with limited evaluation of their impact. A multi-site case study evaluation was undertaken to assess the impact of use of care pathways and protocols on clinicians, service users and service delivery. One of the five sites was a midwifery-led Birth Centre, where an adapted version of the All Wales Clinical Pathway for Normal Birth had been implemented.
Methods: The overarching framework was realistic evaluation. A case study design enabled the capture of data on use of the pathway in the clinical setting, use of multiple methods of data collection and opportunity to study and understand the experiences of clinicians and service users whose care was informed by the pathway. Women attending the Birth Centre were recruited at their 36 week antenatal visit. Episodes of care during labour were observed, following which the woman and the midwife who cared for her were interviewed about use of the pathway. Interviews were also held with other key stakeholders from the study site. Qualitative data were content analysed.
Results: Observations were undertaken of four women during labour. Eighteen interviews were conducted with clinicians and women, including the women whose care was observed and the midwives who cared for them, senior midwifery managers and obstetricians. The implementation of the pathway resulted in a number of anticipated benefits, including increased midwifery confidence in skills to support normal birth and promotion of team working. There were also unintended consequences, including concerns about a lack of documentation of labour care and negative impact on working relationships with obstetric and other midwifery colleagues. Women were unaware their care was informed by a care pathway.
Conclusion: Care pathways are complex interventions which generate a number of consequences for practice. Those considering introduction of pathways need to ensure all relevant stakeholders are engaged with this and develop robust evaluation strategies to accompany implementation
A realistic evaluation : the case of protocol-based care
Background
'Protocol based care' was envisioned by policy makers as a mechanism for delivering on the service improvement agenda in England. Realistic evaluation is an increasingly popular approach, but few published examples exist, particularly in implementation research. To fill this gap, within this paper we describe the application of a realistic evaluation approach to the study of protocol-based care, whilst sharing findings of relevance about standardising care through the use of protocols, guidelines, and pathways.
Methods
Situated between positivism and relativism, realistic evaluation is concerned with the identification of underlying causal mechanisms, how they work, and under what conditions. Fundamentally it focuses attention on finding out what works, for whom, how, and in what circumstances.
Results
In this research, we were interested in understanding the relationships between the type and nature of particular approaches to protocol-based care (mechanisms), within different clinical settings (context), and what impacts this resulted in (outcomes). An evidence review using the principles of realist synthesis resulted in a number of propositions, i.e., context, mechanism, and outcome threads (CMOs). These propositions were then 'tested' through multiple case studies, using multiple methods including non-participant observation, interviews, and document analysis through an iterative analysis process. The initial propositions (conjectured CMOs) only partially corresponded to the findings that emerged during analysis. From the iterative analysis process of scrutinising mechanisms, context, and outcomes we were able to draw out some theoretically generalisable features about what works, for whom, how, and what circumstances in relation to the use of standardised care approaches (refined CMOs).
Conclusions
As one of the first studies to apply realistic evaluation in implementation research, it was a good fit, particularly given the growing emphasis on understanding how context influences evidence-based practice. The strengths and limitations of the approach are considered, including how to operationalise it and some of the challenges. This approach provided a useful interpretive framework with which to make sense of the multiple factors that were simultaneously at play and being observed through various data sources, and for developing explanatory theory about using standardised care approaches in practice
The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al
Filamentary mass accretion towards the high-mass protobinary system G11.92-0.61 MM2
We present deep, sub-arcsecond (2000 au) resolution ALMA 0.82-mm observations of the former high-mass prestellar core candidate G11.92-0.61 MM2, recently shown to be an 500 au-separation protobinary. Our observations show that G11.92-0.61 MM2, located in the G11.92-0.61 protocluster, lies on a filamentary structure traced by 0.82-mm continuum and NH(4-3) emission. The NH(4-3) spectra are multipeaked, indicative of multiple velocity components along the line of sight. To analyse the gas kinematics, we performed pixel-by-pixel Gaussian decomposition of the NH spectra using scousepy and hierarchical clustering of the extracted velocity components using acorns. Seventy velocity- and position-coherent clusters (called 'trees') are identified in the NH-emitting gas, with the eight largest trees accounting for 60 per cent of the fitted velocity components. The primary tree, with 20 per cent of the fitted velocity components, displays a roughly north-south velocity gradient along the filamentary structure traced by the 0.82-mm continuum. Analysing an 0.17 pc-long substructure, we interpret its velocity gradient of 10.5 km s pc as tracing filamentary accretion towards MM2 and estimate a mass inflow rate of to 1.2 M yr. Based on the recent detection of a bipolar molecular outflow associated with MM2, accretion on to the protobinary is ongoing, likely fed by the larger scale filamentary accretion flows. If 50 per cent of the filamentary inflow reaches the protostars, each member of the protobinary would attain a mass of 8 M within yr, comparable to the combined time-scale of the 70-μm- and mid-infrared-weak phases derived for ATLASGAL-TOP100 massive clumps using chemical clocks
Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster
BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
The microRNA-29 family in cartilage homeostasis and osteoarthritis
MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways
Infrared spectroscopy characterization of normal and lung cancer cells originated from epithelium
The vibrational spectral differences of normal and lung cancer cells were studied for the development of effective cancer cell screening by means of attenuated total reflection infrared spectroscopy. The phosphate monoester symmetric stretching νs(PO32-) band intensity at ~970 cm-1 and the phosphodiester symmetric stretching νs(PO2-) band intensity at ~1,085 cm-1 in nucleic acids and phospholipids appeared to be significantly strengthened in lung cancer cells with respect to the other vibrational bands compared to normal cells. This finding suggests that more extensive phosphorylation occur in cancer cells. These results demonstrate that lung cancer cells may be prescreened using infrared spectroscopy tools
- …