468 research outputs found
GeV to TeV astrophysical tau neutrinos
Neutrinos with energy greater than GeV are copiously produced in the p(A,p)
interactions occurring in several astrophysical sites such as (i) the earth
atmosphere, (ii) our galactic plane as well as in (iii) the galaxy clusters. A
comparison of the tau and mu neutrino flux in the presence of neutrino
oscillations from these three representative astrophysical sites is presented.
It is pointed out that the non-atmospheric tau neutrino flux starts dominating
over the downward going atmospheric tau neutrino flux for neutrino energy E as
low as 10 GeV. This energy value is much lower than the energy value, E \geq
5\times 10^4 GeV, estimated for the dominance of the non-atmospheric mu
neutrino flux, in the presence of neutrino oscillations. Future prospects for
possible observations of non-atmospheric tau neutrino flux are briefly
mentioned.Comment: 17 pages, 5 figures (to appear in PLB
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
An MPEG-7 scheme for semantic content modelling and filtering of digital video
Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
A bi-Hamiltonian supersymmetric geodesic equation
A supersymmetric extension of the Hunter-Saxton equation is constructed. We
present its bi-Hamiltonian structure and show that it arises geometrically as a
geodesic equation on the space of superdiffeomorphisms of the circle that leave
a point fixed endowed with a right-invariant metric.Comment: 9 pages, no figure
Critical exponents and equation of state of the three-dimensional Heisenberg universality class
We improve the theoretical estimates of the critical exponents for the
three-dimensional Heisenberg universality class. We find gamma=1.3960(9),
nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and
delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with
suppressed leading scaling corrections. Our results are obtained by combining
Monte Carlo simulations based on finite-size scaling methods and
high-temperature expansions. The critical exponents are computed from
high-temperature expansions specialized to the phi^4 improved model. By the
same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by
means of approximate parametric representations, obtaining the equation of
state in the whole critical region. We also determine a number of universal
amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.
Rotating Black Branes in the presence of nonlinear electromagnetic field
In this paper, we consider a class of gravity whose action represents itself
as a sum of the usual Einstein-Hilbert action with cosmological constant and an
gauge field for which the action is given by a power of the Maxwell
invariant. We present a class of the rotating black branes with Ricci flat
horizon and show that the presented solutions may be interpreted as black brane
solutions with two event horizons, extreme black hole and naked singularity
provided the parameters of the solutions are chosen suitably. We investigate
the properties of the solutions and find that for the special values of the
nonlinear parameter, the solutions are not asymptotically anti-deSitter. At
last, we obtain the conserved quantities of the rotating black branes and find
that the nonlinear source effects on the electric field, the behavior of
spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ
Multidimensional Conservation Laws: Overview, Problems, and Perspective
Some of recent important developments are overviewed, several longstanding
open problems are discussed, and a perspective is presented for the
mathematical theory of multidimensional conservation laws. Some basic features
and phenomena of multidimensional hyperbolic conservation laws are revealed,
and some samples of multidimensional systems/models and related important
problems are presented and analyzed with emphasis on the prototypes that have
been solved or may be expected to be solved rigorously at least for some cases.
In particular, multidimensional steady supersonic problems and transonic
problems, shock reflection-diffraction problems, and related effective
nonlinear approaches are analyzed. A theory of divergence-measure vector fields
and related analytical frameworks for the analysis of entropy solutions are
discussed.Comment: 43 pages, 3 figure
Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method
We complete classical investigations concerning the dynamical stability of an
infinite homogeneous gaseous medium described by the Euler-Poisson system or an
infinite homogeneous stellar system described by the Vlasov-Poisson system
(Jeans problem). To determine the stability of an infinite homogeneous stellar
system with respect to a perturbation of wavenumber k, we apply the Nyquist
method. We first consider the case of single-humped distributions and show
that, for infinite homogeneous systems, the onset of instability is the same in
a stellar system and in the corresponding barotropic gas, contrary to the case
of inhomogeneous systems. We show that this result is true for any symmetric
single-humped velocity distribution, not only for the Maxwellian. If we
specialize on isothermal and polytropic distributions, analytical expressions
for the growth rate, damping rate and pulsation period of the perturbation can
be given. Then, we consider the Vlasov stability of symmetric and asymmetric
double-humped distributions (two-stream stellar systems) and determine the
stability diagrams depending on the degree of asymmetry. We compare these
results with the Euler stability of two self-gravitating gaseous streams.
Finally, we determine the corresponding stability diagrams in the case of
plasmas and compare the results with self-gravitating systems
- âŠ