6 research outputs found

    Medulloblastoma therapy generates risk of a poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report from the International DIPG Registry

    Full text link
    Abstract With improved survivorship in medulloblastoma, there has been an increasing incidence of late complications. To date, no studies have specifically addressed the risk of radiation-associated diffuse intrinsic pontine glioma (DIPG) in medulloblastoma survivors. Query of the International DIPG Registry identified six cases of DIPG with a history of medulloblastoma treated with radiotherapy. All patients underwent central radiologic review that confirmed a diagnosis of DIPG. Six additional cases were identified in reports from recent cooperative group medulloblastoma trials (total n = 12; ages 7 to 21 years). From these cases, molecular subgrouping of primary medulloblastomas with available tissue (n = 5) revealed only non-WNT, non-SHH subgroups (group 3 or 4). The estimated cumulative incidence of DIPG after post-treatment medulloblastoma ranged from 0.3–3.9%. Posterior fossa radiation exposure (including brainstem) was greater than 53.0 Gy in all cases with available details. Tumor/germline exome sequencing of three radiation-associated DIPGs revealed an H3 wild-type status and mutational signature distinct from primary DIPG with evidence of radiation-induced DNA damage. Mutations identified in the radiation-associated DIPGs had significant molecular overlap with recurrent drivers of adult glioblastoma (e.g. NRAS, EGFR, and PTEN), as opposed to epigenetic dysregulation in H3-driven primary DIPGs. Patients with radiation-associated DIPG had a significantly worse median overall survival (median 8 months; range 4–17 months) compared to patients with primary DIPG. Here, it is demonstrated that DIPG occurs as a not infrequent complication of radiation therapy in survivors of pediatric medulloblastoma and that radiation-associated DIPGs may present as a poorly-prognostic distinct molecular subgroup of H3 wild-type DIPG. Given the abysmal survival of these cases, these findings provide a compelling argument for efforts to reduce exposure of the brainstem in the treatment of medulloblastoma. Additionally, patients with radiation-associated DIPG may benefit from future therapies targeted to the molecular features of adult glioblastoma rather than primary DIPG.https://deepblue.lib.umich.edu/bitstream/2027.42/145180/1/40478_2018_Article_570.pd

    Development and validation of a unifying pre-treatment decision tool for intracranial and extracranial metastasis-directed radiotherapy

    Get PDF
    BackgroundThough metastasis-directed therapy (MDT) has the potential to improve overall survival (OS), appropriate patient selection remains challenging. We aimed to develop a model predictive of OS to refine patient selection for clinical trials and MDT.Patients and methodsWe assembled a multi-institutional cohort of patients treated with MDT (stereotactic body radiation therapy, radiosurgery, and whole brain radiation therapy). Candidate variables for recursive partitioning analysis were selected per prior studies: ECOG performance status, time from primary diagnosis, number of additional non-target organ systems involved (NOS), and intracranial metastases.ResultsA database of 1,362 patients was assembled with 424 intracranial, 352 lung, and 607 spinal treatments (n=1,383). Treatments were split into training (TC) (70%, n=968) and internal validation (IVC) (30%, n=415) cohorts. The TC had median ECOG of 0 (interquartile range [IQR]: 0-1), NOS of 1 (IQR: 0-1), and OS of 18 months (IQR: 7-35). The resulting model components and weights were: ECOG = 0, 1, and > 1 (0, 1, and 2); 0, 1, and > 1 NOS (0, 1, and 2); and intracranial target (2), with lower scores indicating more favorable OS. The model demonstrated high concordance in the TC (0.72) and IVC (0.72). The score also demonstrated high concordance for each target site (spine, brain, and lung).ConclusionThis pre-treatment decision tool represents a unifying model for both intracranial and extracranial disease and identifies patients with the longest survival after MDT who may benefit most from aggressive local therapy. Carefully selected patients may benefit from MDT even in the presence of intracranial disease, and this model may help guide patient selection for MDT

    Cardiac Magnetic Resonance Imaging and Blood Biomarkers for Evaluation of Radiation-Induced Cardiotoxicity in Patients With Breast Cancer: Results of a Phase 2 Clinical Trial

    No full text
    PURPOSE: Radiation therapy (RT) can increase the risk of cardiac events in patients with breast cancer (BC), but biomarkers predicting risk for developing RT-induced cardiac disease are currently lacking. We report results from a prospective clinical trial evaluating early magnetic resonance imaging (MRI) and serum biomarker changes as predictors of cardiac injury and risk of subsequent cardiac events after RT for left-sided disease. METHODS: Women with node-negative and node-positive (N-/+) left-sided BC were enrolled on 2 institutional review board (IRB)-approved protocols at 2 institutions. MRI was conducted pretreatment (within 1 week of starting radiation), at the end of treatment (last day of treatment ±1 week), and 3 months after the last day of treatment (±2 weeks) to quantify left and right ventricular volumes and function, myocardial fibrosis, and edema. Perfusion changes during regadenoson stress perfusion were also assessed on a subset of patients (n = 28). Serum was collected at the same time points. Whole heart and cardiac substructures were contoured using CT and MRI. Models were constructed using baseline cardiac and clinical risk factors. Associations between MRI-measured changes and dose were evaluated. RESULTS: Among 51 women enrolled, mean heart dose ranged from 0.80 to 4.7 Gy and mean left ventricular (LV) dose from 1.1 to 8.2 Gy, with mean heart dose 2.0 Gy. T1 time, a marker of fibrosis, and right ventricular (RV) ejection fraction (EF) significantly changed with treatment; these were not dose dependent. T2 (marker of edema) and LV EF did not significantly change. No risk factors were associated with baseline global perfusion. Prior receipt of doxorubicin was marginally associated with decreased myocardial perfusion after RT (P = .059), and mean MHD was not associated with perfusion changes. A significant correlation between baseline IL-6 and mean heart dose (MHD) at the end of RT (ρ 0.44, P = .007) and a strong trend between troponin I and MHD at 3 months post-treatment (ρ 0.33, P = .07) were observed. No other significant correlations were identified. CONCLUSIONS: In this prospective study of women with left-sided breast cancer treated with contemporary treatment planning, cardiac radiation doses were very low relative to historical doses reported by Darby et al. Although we observed significant changes in T1 and RV EF shortly after RT, these changes were not correlated with whole heart or substructure doses. Serum biomarker analysis of cardiac injury demonstrates an interesting trend between markers and MHD that warrants further investigation

    Suppressor of cytokine signaling 3 controls lysosomal routing of G-CSF receptor

    No full text
    The hematopoietic system provides an attractive model for studying growth factor-controlled expansion and differentiation of cells in relation to receptor routing and its consequences for signal transduction. Suppressor of cytokine signaling (SOCS) proteins regulate receptor signaling partly via their ubiquitin ligase (E3)-recruiting SOCS box domain. Whether SOCS proteins affect signaling through modulating intracellular trafficking of receptors is unknown. Here, we show that a juxtamembrane lysine residue (K632) of the granulocyte colony-stimulating factor receptor (G-CSFR) plays a key role in receptor routing and demonstrate that the effects of SOCS3 on G-CSF signaling to a major extent depend on this lysine. Mutation of K632 causes accumulation of G-CSFR in early endosomes and leads to sustained activation of signal transducer and activator of transcription 5 and ERK, but not protein kinase B. Myeloid progenitors expressing G-CSFR mutants lacking K632 show a perturbed proliferation/differentiation balance in response to G-CSF. This is the first demonstration of SOCS-mediated ubiquitination and routing of a cytokine receptor and its impact on maintaining an appropriate signaling output
    corecore