11 research outputs found

    Anti-inflammatory effects of Radix Gentianae Macrophyllae (Qinjiao), Rhizoma Coptidis (Huanglian) and Citri Unshiu Pericarpium (Wenzhou migan) in animal models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>KHU14, an ethanolic extract of <it>Radix Gentianae Macrophyllae </it>(<it>Qinjiao</it>), <it>Rhizoma Coptidis </it>(<it>Huanglian</it>) and <it>Citri Unshiu Pericarpium </it>(<it>Wenzhou migan</it>) was tested for its anti-inflammatory effects.</p> <p>Methods</p> <p>Three out of 20 herbs were found to have anti-inflammatory effects. The formulation of these herbs, i.e. KHU14 was tested for croton oil-induced ear edema, carrageenan-induced paw edema, acetic acid-induced capillary permeability, cotton pellet and delayed type hypersensitivity.</p> <p>Results</p> <p>KHU14 exhibited anti-inflammatory effects in animal models of acute and chronic inflammation. The anti-inflammatory activity of KHU14 observed was comparable to that of celecoxib. KHU14 inhibited the production of NO and PGE<sub>2 </sub>in LPS/IFN-gamma-stimulated peritoneal macrophages, and reduced edema and the amount of infiltrated cells in animal models.</p> <p>Conclusion</p> <p>KHU14 exhibited anti-inflammatory effects as demonstrated in typical immunological tests for anti-inflammation <it>in vitro </it>and <it>in vivo</it>.</p

    Anti-Inflammatory Effects of 6,8-Diprenyl-7,4′-dihydroxyflavanone from Sophora tonkinensis on Lipopolysaccharide-Stimulated RAW 264.7 Cells

    No full text
    The anti-inflammatory effects and molecular mechanism of 6,8-diprenyl-7,4′-dihydroxyflavanone (DDF), one of the flavanones found in Sophora tonkinensis, were assessed in vitro through macrophage-mediated inflammation in the present study. The anti-inflammatory effects of DDF were not previously reported. DDF inhibited the production of nitric oxide and the expression of tumor necrosis factor α, interleukin-1β, and interleukin-6. Furthermore, the activation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinases (ERKs) in lipopolysaccharide-stimulated macrophages was suppressed by treatment with DDF. Therefore, DDF demonstrated potentially anti-inflammatory effects via the blockade of NF-κB and ERK activation in macrophages

    Antifibrotic Activity of Diarylheptanoids from Betula platyphylla

    No full text

    Chemical Constituents from the Roots and Rhizomes of Sophora tonkinensis and Their Effects on Proprotein Convertase Substilisin/Kexin Type 9 Expression

    No full text
    This study was conducted to further investigate bioactive molecules from Sophora tonkinensis that can inhibit proprotein convertase substilisin/kexin type 9 (PCSK9) expression. After interpreting NMR spectroscopic data and MS spectral data of all isolates, a new naturally occurring compound, 6-hydroxy-vitexin-2 &apos;&apos;-O-rhamnoside (7), was identified along with 30 known compounds. The calculation of the gauge-including atomic orbital (GAIO) and electronic circular dichroism (ECD) proposed the absolute configuration of 17 as (2S,3R)-methyl-2-(4-hydroxybenzyl)tartrate by comparing the calculated ECD with experimental data. All isolates were tested for their inhibitory effects on PCSK9 mRNA expression. Of the tested compounds, (+)-isolariciresinol (12) inhibited PCSK9 expression via down- ation of HNF1 alpha and SREBPs.N

    Lack of Correlation between In Vitro and In Vivo Studies on the Inhibitory Effects of (‒)-Sophoranone on CYP2C9 Is Attributable to Low Oral Absorption and Extensive Plasma Protein Binding of (‒)-Sophoranone

    No full text
    (‒)-Sophoranone (SPN) is a bioactive component of Sophora tonkinensis with various pharmacological activities. This study aims to evaluate its in vitro and in vivo inhibitory potential against the nine major CYP enzymes. Of the nine tested CYPs, it exerted the strongest inhibitory effect on CYP2C9-mediated tolbutamide 4-hydroxylation with the lowest IC50 (Ki) value of 0.966 &plusmn; 0.149 &mu;M (0.503 &plusmn; 0.0383 &mu;M), in a competitive manner. Additionally, it strongly inhibited other CYP2C9-catalyzed diclofenac 4&prime;-hydroxylation and losartan oxidation activities. Upon 30 min pre-incubation of human liver microsomes with SPN in the presence of NADPH, no obvious shift in IC50 was observed, suggesting that SPN is not a time-dependent inactivator of the nine CYPs. However, oral co-administration of SPN had no significant effect on the pharmacokinetics of diclofenac and 4&prime;-hydroxydiclofenac in rats. Overall, SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo. The very low permeability of SPN in Caco-2 cells (Papp value of 0.115 &times; 10&minus;6 cm/s), which suggests poor absorption in vivo, and its high degree of plasma protein binding (&gt;99.9%) may lead to the lack of in vitro&ndash;in vivo correlation. These findings will be helpful for the safe and effective clinical use of SPN
    corecore