29 research outputs found

    Room for Improvement in Conducting and Reporting Non-Inferiority Randomized Controlled Trials on Drugs: A Systematic Review

    Get PDF
    BACKGROUND: A non-inferiority (NI) trial is intended to show that the effect of a new treatment is not worse than the comparator. We conducted a review to identify how NI trials were conducted and reported, and whether the standard requirements from the guidelines were followed. METHODOLOGY AND PRINCIPAL FINDINGS: From 300 randomly selected articles on NI trials registered in PubMed at 5 February 2009, we included 227 NI articles that referred to 232 trials. We excluded studies on bioequivalence, trials on healthy volunteers, non-drug trials, and articles of which the full-text version could not be retrieved. A large proportion of trials (34.0%) did not use blinding. The NI margin was reported in 97.8% of the trials, but only 45.7% of the trials reported the method to determine the margin. Most of the trials used either intention to treat (ITT) (34.9%) or per-protocol (PP) analysis (19.4%), while 41.8% of the trials used both methods. Less than 10% of the trials included a placebo arm to confirm the efficacy of the new drug and active comparator against placebo, and less than 5.0% were reporting the similarity of the current trial with the previous comparator's trials. In general, no difference was seen in the quality of reporting before and after the release of the CONSORT statement extension 2006 or between the high-impact and low-impact journals. CONCLUSION: The conduct and reporting of NI trials can be improved, particularly in terms of maximizing the use of blinding, the use of both ITT and PP analysis, reporting the similarity with the previous comparator's trials to guarantee a valid constancy assumption, and most importantly reporting the method to determine the NI margin

    Adaptive design methods in clinical trials – a review

    Get PDF
    In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular due to its flexibility and efficiency. Based on adaptations applied, adaptive designs can be classified into three categories: prospective, concurrent (ad hoc), and retrospective adaptive designs. An adaptive design allows modifications made to trial and/or statistical procedures of ongoing clinical trials. However, it is a concern that the actual patient population after the adaptations could deviate from the originally target patient population and consequently the overall type I error (to erroneously claim efficacy for an infective drug) rate may not be controlled. In addition, major adaptations of trial and/or statistical procedures of on-going trials may result in a totally different trial that is unable to address the scientific/medical questions the trial intends to answer. In this article, several commonly considered adaptive designs in clinical trials are reviewed. Impacts of ad hoc adaptations (protocol amendments), challenges in by design (prospective) adaptations, and obstacles of retrospective adaptations are described. Strategies for the use of adaptive design in clinical development of rare diseases are discussed. Some examples concerning the development of Velcade intended for multiple myeloma and non-Hodgkin's lymphoma are given. Practical issues that are commonly encountered when implementing adaptive design methods in clinical trials are also discussed

    Comparison of treatments in a combination therapy trial

    No full text

    Analysis of Combination Trials With No Placebo Arm

    No full text
    corecore