133 research outputs found

    Effects of experience and body size on refuge choice in the crayfish Orconectes immunis

    Get PDF
    We investigated whether refuge size or experience with a refuge affected the refuge use of male Orconectes immunis crayfish. Individuals were given choices among seven refuges for 10 consecutive days. Refuges were formed from equal length but different diameter PVC pipe and placed in an array in a random sequence. Three treatments were used. In the Novel Refuge treatment, individuals were placed in a new test arena with a new arrangement of cleaned refuges every day. In the Nonremoval treatment, individuals were left in the same arena with the same set of refuges each day. In the Removal treatment, individuals were removed from the refuges each day but placed back in the same arena with the same set of refuges after the refuges had been cleaned. We found that refuge occupation was correlated with an individual\u27s size; smaller crayfish tended to use smaller refuges than larger crayfish, even though all crayfish could fit in all of the different sized refuges. When first tested, individuals initially chose larger refuges than they would subsequently settle in, suggesting that under duress, they were not as particular about refuge characteristics. Individuals in the Nonremoval and Removal treatments were significantly more consistent in their refuge use than those in the Novel Refuge treatment, suggesting that experience with a particular refuge increased use of that refuge. Individuals from the Novel Refuge treatment that were housed for a month with a single refuge did not increase their use of that sized refuge more than those that were housed without a refuge, indicating that simply occupying a refuge of a given size did not affect refuge preference

    Renormalization of the Inverse Square Potential

    Get PDF
    The quantum-mechanical D-dimensional inverse square potential is analyzed using field-theoretic renormalization techniques. A solution is presented for both the bound-state and scattering sectors of the theory using cutoff and dimensional regularization. In the renormalized version of the theory, there is a strong-coupling regime where quantum-mechanical breaking of scale symmetry takes place through dimensional transmutation, with the creation of a single bound state and of an energy-dependent s-wave scattering matrix element.Comment: 5 page

    Efect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA Matrix Polymer Composite

    Get PDF
    Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fbre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a fller in the PLA, so to determine the infuence of the fller loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, fexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and fexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the fexural strength was enhanced

    Prevalence of a history of prior varicella/herpes zoster infection in multiple sclerosis

    Get PDF
    Varicella zoster virus (VZV) infection has been implicated in multiple sclerosis (MS), but direct causal involvement has been disputed. Nevertheless, knowledge of VZV exposure is important, given the risk of serious complications of first exposure while undergoing immunosuppressive treatment, in particular with fingolimod. We distributed questionnaires to MS clinic patients, requesting information about history of chickenpox, sibling/household/occupational exposure, history of zoster (shingles), and disease-modifying treatment. A random, proportionally representative sample of 51 patients that included patients with positive, negative, and unknown chickenpox history were selected for determination of VZV IgG by ELISA. Of 1206 distributed questionnaires, 605 were returned (50% response rate). Of these, 86% reported history of chickenpox, 5.6% gave negative history, and 8.5% did not know. Of 594 who answered the zoster question, 78% gave a negative response, 4% did not know, and 104 (17%) answered yes. Of these, 83 reported 1 episode; 12 had 2; 5 had 3; and 1 each reported 5, 6, and 15 episodes. Of 51 patients tested for VZV IgG (44 “yes,” 4 “no,” and 3 “I don’t know” answers to the question of whether they had chickenpox), 48 were seropositive; the 3 seronegative all had reported having had chickenpox. The high rate of MS patients reporting prior chickenpox infection is comparable with previous reports. A substantial proportion of MS patients, estimated to be higher than an age-matched general population, report single or multiple episodes of zoster. These data are useful for consideration of immunosuppressive treatments and/or VZV and zoster vaccination

    Quantum Anomaly in Molecular Physics

    Get PDF
    The interaction of an electron with a polar molecule is shown to be the simplest realization of a quantum anomaly in a physical system. The existence of a critical dipole moment for electron capture and formation of anions, which has been confirmed experimentally and numerically, is derived. This phenomenon is a manifestation of the anomaly associated with quantum symmetry breaking of the classical scale invariance exhibited by the point-dipole interaction. Finally, analysis of symmetry breaking for this system is implemented within two different models: point dipole subject to an anomaly and finite dipole subject to explicit symmetry breaking.Comment: 4 page

    Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish

    Full text link
    Experimental animal models are a valuable tool to study the neurobiology of emotional behavior and mechanisms underlying human affective disorders. Mounting evidence suggests that various aquatic organisms, including both vertebrate (e.g., zebrafish) and invertebrate (e.g., crayfish) species, may be relevant to study animal emotional response and its deficits. Ideally, model organisms of disease should possess considerable genetic and physiological homology to mammals, display robust behavioral and physiological responses to stress, and should be sensitive to a wide range of drugs known to modulate stress and affective behaviors. Here, we summarize recent findings in the field of zebrafish- and crayfish-based tests of stress, anxiety, aggressiveness and social preference, and discuss further perspectives of using these novel model organisms in translational biological psychiatry. Outlining the remaining questions in this field, we also emphasize the need in further development and a wider use of crayfish and zebrafish models to study the pathogenesis of affective disorders. © 2019 Wiley Periodicals, Inc.MCS is currently supported by National Funds through FCT ‐ Foundation for Science and Technology. AVK is supported by the Russian Science Foundation grant 19‐15‐00053. KAD is supported by the Fellowship of the President of Russia and SPSU Rector Productivity Fellowship for PhD Students. CM is supported by CNPq/Brazil under Edital Universal 2016 (400726/2016‐5). PMA and FB are supported by the strategic plan of MARE ‐ Marine and Environmental Sciences Centre (UID/MAR/04292/2019)

    Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants

    Get PDF
    Abstract Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period

    Loss of chloroplast protease SPPA function alters high light acclimation processes in Arabidopsis thaliana L. (Heynh.)

    Get PDF
    SPPA1 is a protease in the plastids of plants, located in non-appressed thylakoid regions. In this study, T-DNA insertion mutants of the single-copy SPPA1 gene in Arabidopsis thaliana (At1g73990) were examined. Mutation of SPPA1 had no effect on the growth and development of plants under moderate, non-stressful conditions. It also did not affect the quantum efficiency of photosynthesis as measured by dark-adapted Fv/Fm and light-adapted ΦPSII. Chloroplasts from sppA mutants were indistinguishable from the wild type. Loss of SPPA appears to affect photoprotective mechanisms during high light acclimation: mutant plants maintained a higher level of non-photochemical quenching of Photosystem II chlorophyll (NPQ) than the wild type, while wild-type plants accumulated more anthocyanin than the mutants. The quantum efficiency of Photosystem II was the same in all genotypes grown under low light, but was higher in wild type than mutants during high light acclimation. Further, the mutants retained the stress-related Early Light Inducible Protein (ELIP) longer than wild-type leaves during the early recovery period after acute high light plus cold treatment. These results suggest that SPPA1 may function during high light acclimation in the plastid, but is non-essential for growth and development under non-stress conditions

    Red swamp crayfish: biology, ecology and invasion - an overview

    Full text link
    corecore