101 research outputs found

    Molecular-Scale Interface Engineering of Nanocrystalline Titania by Co-adsorbents for Solar Energy Conversion

    Get PDF
    The use of mixed self-assembled monolayers, combining hydrophobic co-adsorbents with the sensitizer, has been demonstrated to enhance the efficiency of dye-sensitized solar cells (DSCs). Herein, the influence of the anchoring groups of the co-adsorbents on the performance of the DSCs is carefully examined by selecting two model molecules: neohexyl phosphonic acid (NHOOP) and bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP). The effect of these co-adsorbents on the photovoltaic performance (JV curves, incident photon-to-electron conversion efficiency) is investigated. Photoelectron spectroscopy and electrochemical impedance spectroscopy are performed to assess the spatial configuration of adsorbed dye and co-adsorbent molecules. The photoelectron spectroscopy studies indicate that the ligands of the ruthenium complex, containing thiophene groups, point out away from the surface of TiO2 in comparison with the NCS group

    D-pi-A Dye System Containing Cyano-Benzoic Acid as Anchoring Group for Dye-Sensitized Solar Cells

    Get PDF
    A D-pi-A dye (KM-1) incorporating cyanobenzoic acid as a new acceptor/anchoring group has been synthesized for dye-sensitized solar cells (DSCs) with a high molar extinction coefficient of 66 700 M-1 cm(-1) at 437 nm. Theoretical calculations show that the hydrogen bond between -CN and surface hydroxyl leads to the most stable configuration on the surface of TiO2. In addition, the adsorption of the dye on TiO2 follows a Brunauer-Emmett-Teller (BET) isotherm. Multilayer adsorption of KM-1 on TiO2 seems to take place particularly at higher dye concentrations. DSC device using KM-1 reached a maximum incident photon-to-current conversion efficiency (IPCE) of 84%, with a solar to electric power conversion efficiency (PCE) of 3.3% at AM1.5 G illumination (100 mW cm(-2)). This new type of anchoring group paves a way to light harvesting with strong binding to the metal oxide surface. design new dyes that combine good visibl

    Effect of Extended π-Conjugation of the Donor Structure of Organic D–A−π–A Dyes on the Photovoltaic Performance of Dye-Sensitized Solar Cells

    Get PDF
    Two new D−A−π-spacer−A organic dyes, KM-10 and KM-11, containing a benzothiadiazole unit in a π-spacer and a cyanoacrylic acid as an acceptor have been synthesized and tested as sensitizers in dye-sensitized solar cells. Structural variations of the donor moiety, i.e., π-extension of the diphenylamine electron-donating groups, gave rise to different photovoltaic efficiencies –7.1% for KM-10 and 8% for KM-11– despite having comparable absorption properties. A detailed investigation, including transient photo- current and photovoltage decay measurement, transient absorption spectroscopy, and quantum chemical methods, provided important conclusions about the nature of the substitution on the photovoltaic properties of dyes

    Influence of the Anchoring Modes on the Electronic and Photovoltaic Properties of D−π–A Dyes

    Get PDF
    Five new donor−π-bridge−acceptor (D−π−A) organic sensitizers with cyano and/or triple bond substituted benzoic acid as acceptor/anchoring groups were synthesized and tested for their performance in dye-sensitized solar cells (DSCs). The systematic incorporation of a cyano group on the benzoic acid anchoring part and an additional acetylene bond at the para-position to −COOH lead to a variation of the photoelectrochemical properties, electronic transitions, and device performances. Characterization of the molecular structure, the electronic/optical properties of the dyes, as well as their photovoltaic performance in DSCs was accomplished by means of electrochemistry, quantum chemical methods, and various spectroscopic techniques such as photoinduced absorption, steady-state spectroscopy, and time-resolved transient absorption studies on femto- and nanosecond time scales. Thereby, significant dependence of DSCs performances on the substituents and anchoring groups was observed. In general, cyano substituents lead to improved DSCs performances. On the other hand, the insertion of an acetylene linker in combination with a cyano group does not enhance the device efficiencies. Devices composed of a para-cyano benzoic acid as anchor revealed maximum IPCE values of 80% with a PCE of 4.50% at AM 1.5 G illumination (100 mW cm−2) due to retarded charge recombination dynamics

    An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells

    Get PDF
    Dye-sensitized solar cells (DSCs) have achieved impressive conversion efficiencies for solar energy of over 11% with an electrolyte that contains triiodide/iodide as a redox couple. Although triiodide/iodide redox couples work efficiently in DSCs, they suffer from two major disadvantages: electrolytes that contain triiodide/iodide corrode electrical contacts made of silver (which reduces the options for the scale up of DSCs to module size) and triiodide partially absorbs visible light. Here, we present a new disulfide/thiolate redox couple that has negligible absorption in the visible spectral range, a very attractive feature for flexible DSCs that use transparent conductors as current collectors. Using this novel, iodide-free redox electrolyte in conjunction with a sensitized heterojunction, we achieved an unprecedented efficiency of 6.4% under standard illumination test conditions. This novel redox couple offers a viable pathway to develop efficient DSCs with attractive properties for scale up and practical applications

    Synthesis and Optoelectronic Properties of Chemically Modified Bifluorenylidenes.

    Get PDF
    The development of new light harvesting materials is a key issue for the progress of the research on organic & hybrid photovoltaics. Here, we report a new class of organic sensitizers based on the bi-fluorenylidene moiety as p-linker within the donor–p-linker–acceptor (D–p–A) scheme. The new dyes are endowed with electron donor and electron acceptor units at strategic positions in order to improve their electronic and light-harvesting properties. The comprehensive study of these compounds through the use of different experimental and theoretical techniques, provides an in-depth understanding of their electronic and photophysical properties, and reveal their interest as photovoltaic materials

    An Organic D-pi-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells

    Get PDF
    The high molar absorption coefficient organic D-pi-A dye C220 exhibits more than 6% certified electric power conversion efficiency at AM 1.5G solar irradiation (100 mW cm(-2)) in a solid-state dye sensitized solar cell using 2,2',7,7'-tetrakis(N,N-dimethoxyphenylamine)-9,9'-spirobi-fluorene (Spiro-MeOTAD) as the organic hole transporting material. This contributes to a new record (6.08% by NREL) for this type of sensitized heterojunction photovoltaic device. Efficient charge generation is proved by incident photon-to-current conversion efficiency spectra. Transient photovoltage and photocurrent decay measurements showed that the enhanced performance achieved with C220 partially stems from the high charge collection efficiency over a wide potential range

    Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in π-Conjugated Donor-Acceptor Dyes

    Get PDF
    Two donor-π-acceptor (D-π-A) dyes are synthesized for application in dye- sensitized solar cells (DSSC). These D-π-A sensitizers use triphenylamine as donor, oligothiophene as both donor and π-bridge, and benzothiadiazole (BTDA)/cyanoacrylic acid as acceptor that can be anchored to the TiO2 sur- face. Tuning of the optical and electrochemical properties is observed by the insertion of a phenyl ring between the BTDA and cyanoacrylic acid acceptor units. Density functional theory (DFT) calculations of these sensitizers provide further insight into the molecular geometry and the impact of the additional phenyl group on the photophysical and photovoltaic performance. These dyes are investigated as sensitizers in liquid-electrolyte-based dye-sensitized solar cells. The insertion of an additional phenyl ring shows significant influence on the solar cells’ performance leading to an over 6.5 times higher efficiency (η = 8.21%) in DSSCs compared to the sensitizer without phenyl unit (η = 1.24%). Photophysical investigations reveal that the insertion of the phenyl ring blocks the back electron transfer of the charge separated state, thus slowing down recombination processes by over 5 times, while maintaining efficient electron injection from the excited dye into the TiO2-photoanode
    • …
    corecore