9,033 research outputs found
Ozonation of cooling tower waters
Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria
Liquid ethylene-propylene copolymers
Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight
Rheology of Active Filament Solutions
We study the viscoelasticity of an active solution of polar biofilaments and
motor proteins. Using a molecular model, we derive the constitutive equations
for the stress tensor in the isotropic phase and in phases with liquid
crystalline order. The stress relaxation in the various phases is discussed.
Contractile activity is responsible for a spectacular difference in the
viscoelastic properties on opposite sides of the order-disorder transition.Comment: 4 pages, 1 figur
Nematic and Polar order in Active Filament Solutions
Using a microscopic model of interacting polar biofilaments and motor
proteins, we characterize the phase diagram of both homogeneous and
inhomogeneous states in terms of experimental parameters. The polarity of motor
clusters is key in determining the organization of the filaments in homogeneous
isotropic, polarized and nematic states, while motor-induced bundling yields
spatially inhomogeneous structures.Comment: 4 pages. 3 figure
Concept study for a high-efficiency nanowire-based thermoelectric
Materials capable of highly efficient, direct thermal-to-electric energy
conversion would have substantial economic potential. Theory predicts that
thermoelectric efficiencies approaching the Carnot limit can be achieved at low
temperatures in one-dimensional conductors that contain an energy filter such
as a double-barrier resonant tunneling structure. The recent advances in growth
techniques suggest that such devices can now be realized in heterostructured,
semiconductor nanowires. Here we propose specific structural parameters for
InAs/InP nanowires that may allow the experimental observation of near-Carnot
efficient thermoelectric energy conversion in a single nanowire at low
temperature
Bridging the microscopic and the hydrodynamic in active filament solutions
Hydrodynamic equations for an isotropic solution of active polar filaments
are derived from a microscopic mean-field model of the forces exchanged between
motors and filaments. We find that a spatial dependence of the motor stepping
rate along the filament is essential to drive bundle formation. A number of
differences arise as compared to hydrodynamics derived (earlier) from a
mesoscopic model where relative filament velocities were obtained on the basis
of symmetry considerations. Due to the anisotropy of filament diffusion, motors
are capable of generating net filament motion relative to the solvent. The
effect of this new term on the stability of the homogeneous state is
investigated.Comment: 7 pages, 2 figures, submitted to Europhys. Let
Non-equilibrium microtubule fluctuations in a model cytoskeleton
Biological activity gives rise to non-equilibrium fluctuations in the
cytoplasm of cells; however, there are few methods to directly measure these
fluctuations. Using a reconstituted actin cytoskeleton, we show that the
bending dynamics of embedded microtubules can be used to probe local stress
fluctuations. We add myosin motors that drive the network out of equilibrium,
resulting in an increased amplitude and modified time-dependence of microtubule
bending fluctuations. We show that this behavior results from step-like forces
on the order of 10 pN driven by collective motor dynamics
Direct Current Electrical Stimulation Increases the Fusion Rate of Spinal Fusion Cages
Study Design. A randomized experimental evaluation of direct current stimulation in a validated animal model with an experimental control group, using blinded radiographic, biomechanical, histologic, and statistical measures.
Objectives. To evaluate the efficacy of the adjunctive use of direct current stimulation on the fusion rate and speed of healing of titanium interbody fusion cages packed with autograft in a sheep lumbar interbody fusion model.
Summary of Background Data. Titanium lumbar interbody spinal fusion cages have been reported to be 90% effective for single-level lumbar interbody fusion. However, fusion rates are reported to be between 70% and 80% in patients with multilevel fusions or with risk factors such as obesity, tobacco use, or metabolic disorders. The authors hypothesized that direct current stimulation would increase the fusion rate of titanium interbody fusion cages packed with autograft in a sheep lumbar interbody fusion model.
Methods. Twenty-two sheep underwent lumbar discectomy and fusion at L4–L5 with an 11- × 20-mm Bagby and Kuslich (BAK) cage packed with autograft. Seven sheep received a BAK cage and no current. Seven sheep had a cage and a 40-μA current applied with a direct current stimulator. Eight sheep had a BAK cage and a 100-μA current applied. All sheep were killed 4 months after surgery. The efficacy of electrical stimulation in promoting interbody fusion was assessed by performing radiographic, biomechanical, and histologic analyses in a blinded fashion.
Results. The histologic fusion rate increased as the direct current dose increased from 0 μA to 40 μA to 100 μA (P \u3c 0.009). Histologically, all animals in the 100-μA group had fusions in both the right and left sides of the cage. Direct current stimulation had a significant effect on increasing the stiffness of the treated motion segment in right lateral bending (P \u3c 0.120), left lateral bending (P \u3c 0.017), right axial rotation (P \u3c 0.004), left axial rotation (P \u3c 0.073), extension (P \u3c 0.078), and flexion (P \u3c 0.029) over nonstimulated levels.
Conclusion. Direct current stimulation increased the histologic and biomechanical fusion rate and the speed of healing of lumbar interbody spinal fusion cages in an ovine model at 4 months
Testing Lorentz and CPT symmetry with hydrogen masers
We present details from a recent test of Lorentz and CPT symmetry using
hydrogen masers. We have placed a new limit on Lorentz and CPT violation of the
proton in terms of a recent standard model extension by placing a bound on
sidereal variation of the F = 1 Zeeman frequency in hydrogen. Here, the
theoretical standard model extension is reviewed. The operating principles of
the maser and the double resonance technique used to measure the Zeeman
frequency are discussed. The characterization of systematic effects is
described, and the method of data analysis is presented. We compare our result
to other recent experiments, and discuss potential steps to improve our
measurement.Comment: 26 pages, 16 figure
- …