1,444 research outputs found

    Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials

    Get PDF
    Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field

    Systematic techniques for assisting recruitment to trials (START): study protocol for embedded, randomized controlled trials

    Get PDF
    BACKGROUND: Randomized controlled trials play a central role in evidence-based practice, but recruitment of participants, and retention of them once in the trial, is challenging. Moreover, there is a dearth of evidence that research teams can use to inform the development of their recruitment and retention strategies. As with other healthcare initiatives, the fairest test of the effectiveness of a recruitment strategy is a trial comparing alternatives, which for recruitment would mean embedding a recruitment trial within an ongoing host trial. Systematic reviews indicate that such studies are rare. Embedded trials are largely delivered in an ad hoc way, with interventions almost always developed in isolation and tested in the context of a single host trial, limiting their ability to contribute to a body of evidence with regard to a single recruitment intervention and to researchers working in different contexts. METHODS/DESIGN: The Systematic Techniques for Assisting Recruitment to Trials (START) program is funded by the United Kingdom Medical Research Council (MRC) Methodology Research Programme to support the routine adoption of embedded trials to test standardized recruitment interventions across ongoing host trials. To achieve this aim, the program involves three interrelated work packages: (1) methodology - to develop guidelines for the design, analysis and reporting of embedded recruitment studies; (2) interventions - to develop effective and useful recruitment interventions; and (3) implementation - to recruit host trials and test interventions through embedded studies. DISCUSSION: Successful completion of the START program will provide a model for a platform for the wider trials community to use to evaluate recruitment interventions or, potentially, other types of intervention linked to trial conduct. It will also increase the evidence base for two types of recruitment intervention. TRIAL REGISTRATION: The START protocol covers the methodology for embedded trials. Each embedded trial is registered separately or as a substudy of the host trial

    A randomised, double-blind, placebo-controlled phase 3 study of lenabasum in diffuse cutaneous systemic sclerosis: RESOLVE-1 design and rationale

    Get PDF
    OBJECTIVES: The multi-systemic, heterogenous nature of diffuse cutaneous systemic sclerosis (dcSSc) presents challenges in designing clinical studies that can demonstrate a treatment effect on overall disease burden. We describe the design of the first Phase 3 study in dcSSc patients where the American College of Rheumatology (ACR) Combined Response Index in diffuse cutaneous Systemic Sclerosis (CRISS) score was chosen prospectively as the primary outcome. The CRISS measures key clinical disease parameters and patient-reported outcomes (PROs). METHODS: RESOLVE-1 is a Phase 3, randomised, double-blind, placebo-controlled trial of dcSSc patients evaluating the efficacy and safety of lenabasum. Patients ≥18 years of age with dc-SSc and disease duration ≤6 years were eligible. Patients could continue stable background therapy for dcSSc, including stable immunosuppressive therapies. They were randomised to lenabasum 5 or 20 mg twice daily or placebo. The primary efficacy outcome was the mean change from baseline to 52 weeks in the ACR CRISS score. RESULTS: The study enrolled 365 patients over 1.5 years at 77 sites in 13 countries in North America, Europe, Israel, and Asia-Pacific, with the last patient first visit on May 1, 2019. CONCLUSIONS: RESOLVE-1 is the first Phase 3 interventional study to date in dcSSc to prospectively use the ACR CRISS as the primary efficacy outcome. Eligibility criteria allowed background therapy as might occur in clinical practice. This approach also facilitated timely patient enrolment. RESOLVE-1 provides a novel study design that may be used for future Phase 3 dcSSc studies to assess the holistic efficacy of therapy

    Practices, patients and (im)perfect data - feasibility of a randomised controlled clinical drug trial in German general practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Randomised controlled clinical (drug) trials supply high quality evidence for therapeutic strategies in primary care. Until now, experience with drug trials in German general practice has been sparse. In 2007/2008, the authors conducted an investigator-initiated, non-commercial, double-blind, randomised controlled pilot trial (HWI-01) to assess the clinical equivalence of ibuprofen and ciprofloxacin in the treatment of uncomplicated urinary tract infection (UTI). Here, we report the feasibility of this trial in German general practices and the implementation of Good Clinical Practice (GCP) standards as defined by the International Conference on Harmonisation (ICH) in mainly inexperienced general practices.</p> <p>Methods</p> <p>This report is based on the experience of the HWI-01 study conducted in 29 German general practices. Feasibility was defined by 1) successful practice recruitment, 2) sufficient patient recruitment, 3) complete and accurate data collection and 4) appropriate protection of patient safety.</p> <p>Results</p> <p>The final practice recruitment rate was 18%. In these practices, 79 of 195 screened UTI patients were enrolled. Recruitment differed strongly between practices (range 0-12, mean 2.8 patients per practice) and was below the recruitment goal of approximately 100 patients. As anticipated, practice nurses became the key figures in the screening und recruitment of patients. Clinical trial demands, in particular for completing symptom questionnaires, documentation of source data and reporting of adverse events, did not agree well with GPs' documentation habits and required support from study nurses. In many cases, GPs and practice staff seemed to be overwhelmed by the amount of information and regulations. No sudden unexpected serious adverse reactions (SUSARs) were observed during the trial.</p> <p>Conclusions</p> <p>To enable drug trials in general practice, it is necessary to adapt the setup of clinical research infrastructure to the needs of GPs and their practice staff. Risk adaption of clinical trial regulations is necessary to facilitate non-commercial comparative effectiveness trials in primary health care.</p> <p>Trial Registration</p> <p>Trial registration number: <a href="http://www.controlled-trials.com/ISRCTN00470468">ISRCTN00470468</a></p

    Antimony-doped graphene nanoplatelets

    Get PDF
    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0

    Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene

    Full text link
    The chapter generalizes results on influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe electronic properties of graphene-admolecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. Applied technique allowed observation of possible metal-insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo-Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced in dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts against or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be nonmonotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.Comment: 16 pages, 10 figure

    Enhanced convective heat transfer using graphene dispersed nanofluids

    Get PDF
    Nanofluids are having wide area of application in electronic and cooling industry. In the present work, hydrogen exfoliated graphene (HEG) dispersed deionized (DI) water, and ethylene glycol (EG) based nanofluids were developed. Further, thermal conductivity and heat transfer properties of these nanofluids were systematically investigated. HEG was synthesized by exfoliating graphite oxide in H2 atmosphere at 200°C. The nanofluids were prepared by dispersing functionalized HEG (f-HEG) in DI water and EG without the use of any surfactant. HEG and f-HEG were characterized by powder X-ray diffractometry, electron microscopy, Raman and FTIR spectroscopy. Thermal and electrical conductivities of f-HEG dispersed DI water and EG based nanofluids were measured for different volume fractions and at different temperatures. A 0.05% volume fraction of f-HEG dispersed DI water based nanofluid shows an enhancement in thermal conductivity of about 16% at 25°C and 75% at 50°C. The enhancement in Nusselts number for these nanofluids is more than that of thermal conductivity

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
    corecore