111 research outputs found

    Trident: a universal tool for generating synthetic absorption spectra from astrophysical simulations

    Get PDF
    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales, however, the utility of these simulations is often limited by our ability to directly compare them with the datasets produced by observers: spectra, photometry, etc. To address this problem, we have created Trident}, a Python-based, open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. Trident} can (i) create absorption-line spectra for any trajectory through a simulated dataset mimicking both background quasar and down-the-barrel configurations, (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph, (iii) operate across the ultraviolet, optical and infrared using customizable absorption line lists, (iv) trace simulated physical structures directly to spectral features, (v) approximate the presence of ion species absent from the simulation outputs, (vi) generate column density maps for any ion, and (vii) provide support for all major astrophysical hydrodynamical codes. The focus of Trident's development is for using simulated datasets to better interpret observations of the circumgalactic medium (CGM) and intergalactic medium (IGM), but it remains a general tool applicable in other contexts.Comment: 16 pages, 13 figures, published in ApJ, Code available at http://trident-project.or

    The AGORA High-resolution Galaxy Simulations Comparison Project. II. Isolated Disk Test

    Get PDF
    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes

    On the survival of cool clouds in the circumgalactic medium

    Get PDF
    We explore the survival of cool clouds in multiphase circumgalactic media. We revisit the ‘cloud-crushing problem’ in a large survey of simulations including radiative cooling, self-shielding, self-gravity, magnetic fields, and anisotropic Braginskii conduction and viscosity (with saturation). We explore a wide range of parameters including cloud size, velocity, ambient temperature and density, and a variety of magnetic field configurations and cloud turbulence. We find that realistic magnetic fields and turbulence have weaker effects on cloud survival; the most important physics is radiative cooling and conduction. Self-gravity and self-shielding are important for clouds that are initially Jeans-unstable, but largely irrelevant otherwise. Non-self-gravitating, realistically magnetized clouds separate into four regimes: (1) at low column densities, clouds evaporate rapidly via conduction; (2) a ‘failed pressure confinement’ regime, where the ambient hot gas cools too rapidly to provide pressure confinement for the cloud; (3) an ‘infinitely long-lived’ regime, in which the cloud lifetime becomes longer than the cooling time of gas swept up in the leading bow shock, so the cloud begins to accrete and grow; and (4) a ‘classical cloud destruction’ regime, where clouds are eventually destroyed by instabilities. In the final regime, the cloud lifetime can exceed the naive cloud-crushing time owing to conduction-induced compression. However, small and/or slow-moving clouds can also evaporate more rapidly than the cloud-crushing time. We develop simple analytic models that explain the simulated cloud destruction times in this regime

    Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes

    Get PDF
    We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity κ∼3×10²⁹ cm² s⁻¹ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ∼10⁴), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O VI columns ≳10^(14.5) cm⁻² at distances ≳150kpc⁠. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot (⁠T≳10⁵) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase

    The Large Magellanic Cloud's 30\sim30 Kiloparsec Bow Shock and its Impact on the Circumgalactic Medium

    Full text link
    The interaction between the supersonic motion of the Large Magellanic Cloud (LMC) and the Circumgalactic Medium (CGM) is expected to result in a bow shock that leads the LMC's gaseous disk. In this letter, we use hydrodynamic simulations of the LMC's recent infall to predict the extent of this shock and its effect on the Milky Way's (MW) CGM. The simulations clearly predict the existence of an asymmetric shock with a present day stand-off radius of 6.7\sim6.7 kpc and a transverse diameter of 30\sim30 kpc. Over the past 500 Myr, 8%\sim8\% of the MW's CGM in the southern hemisphere should have interacted with the shock front. This interaction may have had the effect of smoothing over inhomogeneities and increasing mixing in the MW CGM. We find observational evidence of the existence of the bow shock in recent HαH\alpha maps of the LMC, providing a potential explanation for the envelope of ionized gas surrounding the LMC. Furthermore, the interaction of the bow shock with the MW CGM may also explain observations of ionized gas surrounding the Magellanic Stream. Using recent orbital histories of MW satellites, we find that many satellites have likely interacted with the LMC shock. Additionally, the dwarf galaxy Ret2 is currently sitting inside the shock, which may impact the interpretation of reported gamma ray excess in Ret2. This work highlights bow shocks associated with infalling satellites are an under-explored, yet potentially very important dynamical mixing process in the circumgalactic and intracluster media.Comment: Submitted to ApJ Letters, 5 figures and 1 table. Comments welcome
    corecore