2 research outputs found

    Naphthalene

    No full text
    Objective\bf Objective This cross-sectional study determined whether acute sensory irritative or (sub)chronic inflammatory effects of the eyes, nose or respiratory tract are observed in employees who are exposed to naphthalene at the workplace. Methods\bf Methods Thirtynine healthy and non-smoking male employees with either moderate (n\it n = 22) or high (n\it n = 17) exposure to naphthalene were compared to 22 male employees from the same plants with no or only rare exposure to naphthalene. (Sub)clinical endpoint measures included nasal endoscopy, smell sensitivity, self-reported work-related complaints and the intensity of naphthalene odor and irritation. In addition, cellular and soluble mediators in blood, nasal lavage fluid (NALF) and induced sputum (IS) were analysed. All measurements were carried out pre-shift on Monday and post-shift on Thursday. Personal air monitoring revealed naphthalene shift concentrations up to 11.6 mg/m3mg/m^{3} with short-term peak concentrations up to 145.8 mg/m3mg/m^{3} and 1- and 2-naphthol levels (sum) in post-shift urine up to 10.1 mg/L. Results\bf Results Acute sensory irritating effects at the eyes and upper airways were reported to occur when directly handling naphthalene (e.g., sieving pure naphthalene). Generally, naphthalene odor was described as intense and unpleasant. Habituation effects or olfactory fatigue were not observed. Endoscopic examination revealed mild inflammatory effects at the nasal mucosa of exposed employees in terms of reddening and swelling and abnormal mucus production. No consistent pattern of cellular and soluble mediators in blood, NALF or IS was observed which would indicate a chronic or acute inflammatory effect of naphthalene in exposed workers. Conclusions\bf Conclusions The results suggest that exposure to naphthalene induces acute sensory irritative effects in exposed workers. No (sub)chronic inflammatory effects on the nasal epithelium or the respiratory tract could be observed under the study conditions described here

    Cell-free DNA release under psychosocial and physical stress conditions

    No full text
    The understanding of mechanisms linking psychological stress to disease risk depend on reliable stress biomarkers. Circulating cell-free DNA (cfDNA) has emerged as a potential biomarker of cellular stress, aging, inflammatory processes, and cell death. Recent studies indicated that psychosocial stress and physical exercise might also influence its release. We compared the effects of acute psychosocial and physical exercise stress on cfDNA release by exposing 20 young, healthy men to both an acute psychosocial laboratory stressor and an acute physical exercise stressor. Venous blood and saliva samples were collected before and after stress exposure. Cell-free DNA was extracted from plasma and quantified by qPCR. Furthermore, cfDNA fragment length was analyzed and cfDNA methylation patterns were assayed across time. In addition, release of stress hormones and subjective stress responses were measured. Results showed a twofold increase of cfDNA after TSST and fivefold increase after exhaustive treadmill exercise, with an overabundance of shorter cfDNA fragments after physical exhaustion. Interestingly, cell-free mitochondrial DNA showed similar increase after both stress paradigms. Furthermore, cfDNA methylation signatures—used here as a marker for diverse cellular origin—were significantly different post stress tests. While DNA methylation decreased immediately after psychosocial stress, it increased after physical stress, suggesting different cellular sources of active DNA release. In summary, our results suggest stimulus and cell-specific regulation of cfDNA release. Whereas the functional role of stress-associated cfDNA release remains elusive, it might serve as a valuable biomarker in molecular stress research as a part of the psychophysiological stress response
    corecore