91 research outputs found

    A Search for Active Galactic Nuclei in Sc Galaxies with H II Spectra

    Get PDF
    (Abridged) We have searched for nuclear radio emission from a statistically complete sample of 40 Sc galaxies within 30 Mpc that are optically classified as star-forming objects, in order to determine whether weak AGNs might be present. Only three nuclear radio sources were detected, in NGC 864, NGC 4123, and NGC 4535. These galaxies have peak 6-cm radio powers of 10^{20} W/Hz at arcsecond resolution, while upper limits of the non-detected galaxies typically range from 10^{18.4} to 10^{20} W/Hz. The three nuclear radio sources all are resolved and appear to have diffuse morphologies, with linear sizes of ~300 pc. This strongly indicates that circumnuclear star formation has been detected in these three H II galaxies. Comparison with previous 20-cm VLA results for the detected galaxies shows that the extended nuclear radio emission has a flat spectrum in two objects, and almost certainly is generated by thermal emission from gas ionized by young stars in the centers of those galaxies. The 6-cm radio powers are comparable to predictions for thermal emission that are based on the nuclear H-alpha luminosities, and imply nuclear star formation rates of 0.08-0.8 solar masses/yr, while the low-resolution NRAO VLA Sky Survey implies galaxy-wide star formation rates of 0.3-1.0 solar masses/yr in stars above 5 solar masses. Although the presence of active nuclei powered by massive black holes cannot be definitively ruled out, the present results suggest that they are likely to be rare in these late-type galaxies with H II spectra.Comment: To appear in ApJ. 7 page

    The Radio Properties of Composite LINER/HII Galaxies

    Get PDF
    Arcsec-resolution VLA observations -- newly obtained as well as published -- of 40 nearby galaxies are discussed, completing a study of the radio properties of a magnitude-limited sample of nearby galaxies of the composite LINER/HII type. Our results reveal an overall detection rate of at least 25% AGN candidates among these composite sources. The general properties of these AGN candidates, as compared to non-AGN composite sources and HII galaxies, are discussed.Comment: Accepted for publication in ApJ

    Radio Sources in Low-Luminosity Active Galactic Nuclei. I. VLA Detections of Compact, Flat-Spectrum Cores

    Full text link
    We report a 0.2" resolution, 15 GHz survey of a sample of 48 low-luminosity active galactic nuclei with the Very Large Array. Compact radio emission has been detected in 57% (17 of 30) of LINERs and low-luminosity Seyferts, at least 15 of which have a flat to inverted radio spectrum (alpha > -0.3). The compact radio cores are found in both type 1 (i.e. with broad Halpha) and type 2 (without broad Halpha) nuclei. The 2 cm radio power is significantly correlated with the emission-line ([OI] lambda6300) luminosity. While the present observations are consistent with the radio emission originating in star-forming regions, higher resolution radio observations of 10 of the detected sources, reported in a companion paper (Falcke et al. 2000), show that the cores are very compact (= 10^8K) and probably synchrotron self-absorbed, ruling out a starburst origin. Thus, our results suggest that at least 50% of low-luminosity Seyferts and LINERs in the sample are accretion powered, with the radio emission presumably coming from jets or advection-dominated accretion flows. We have detected only 1 of 18 `transition' (i.e. LINER + HII) nuclei observed, indicating their radio cores are significantly weaker than those of `pure' LINERs.Comment: To appear in the Astrophysical Journal, October 20, 200

    The Nature of Composite LINER/HII Galaxies, As Revealed from High-Resolution VLA Observations

    Get PDF
    A sample of 37 nearby galaxies displaying composite LINER/HII and pure HII spectra was observed with the VLA in an investigation of the nature of their weak radio emission. The resulting radio contour maps overlaid on optical galaxy images are presented here, together with an extensive literature list and discussion of the individual galaxies. Radio morphological data permit assessment of the ``classical AGN'' contribution to the global activity observed in these ``transition'' LINER galaxies. One in five of the latter objects display clear AGN characteristics: these occur exclusively in bulge-dominated hosts.Comment: 31 pages, 27 figures, accepted by ApJ

    What Powers the Compact Radio Emission in Nearby Elliptical and S0 Galaxies?

    Full text link
    Many nearby early-type (elliptical and S0) galaxies contain weak (milli-Jansky level) nuclear radio sources on scales a few hundred parsecs or less. The origin of the radio emission, however, has remained unclear, especially in volume-limited samples that select intrinsically less luminous galaxies. Both active galactic nuclei and nuclear star formation have been suggested as possible mechanisms for producing the radio emission. This paper utilizes optical spectroscopic information to address this issue. A substantial fraction of the early-type galaxies surveyed with the Very Large Array by Wrobel & Heeschen (1991) exhibits detectable optical emission lines in their nuclei down to very sensitive limits. Comparison of the observed radio continuum power with that expected from the thermal gas traced by the optical emission lines implies that the bulk of the radio emission is nonthermal. Both the incidence and the strength of optical line emission correlate with the radio power. At a fixed line luminosity, ellipticals have stronger radio cores than S0s. The relation between radio power and line emission observed in this sample is consistent with the low-luminosity extension of similar relations seen in classical radio galaxies and luminous Seyfert nuclei. A plausible interpretation of this result is that the weak nuclear sources in nearby early-type galaxies are the low-luminosity counterparts of more powerful AGNs. The spectroscopic evidence supports this picture. Most of the emission-line objects are optically classified as Seyfert nuclei or low-ionization nuclear emission-line regions (LINERs), the majority of which are likely to be accretion-powered sources.Comment: LaTex, 16 pages including embedded figures. Accepted for publication in the Astrophysical Journa

    The Influence of Bars on Nuclear Activity

    Full text link
    We test ideas on fueling of galactic nuclei by bar-driven inflow by comparing the detection rate and intensity of nuclear H II regions and AGNs among barred and unbarred galaxies in a sample of over 300 spirals selected from our recent optical spectroscopic survey of nearby galaxies. Among late-type spirals (Sc-Sm), but not early-type (S0/a-Sbc), we observe in the barred group a very marginal increase in the detection rate of H II nuclei and a corresponding decrease in the incidence of AGNs. The minor differences in the detection rates, however, are statistically insignificant, most likely stemming from selection effects and not from a genuine influence from the bar. The presence of a bar seems to have no noticeable impact on the likelihood of a galaxy to host either nuclear star formation or an AGN. The nuclei of early-type barred spirals do exhibit measurably higher star-formation rates than their unbarred counterparts, as indicated by either the luminosity or the equivalent width of H-alpha emission. By contrast, late-type spirals do not show such an effect. Bars have a negligible effect on the strength of the AGNs in our sample, regardless of the Hubble type of the host galaxy. This result confirms similar conclusions reached by other studies based on much smaller samples.Comment: To appear in the Astrophysical Journal. LaTex, 31 pages including 6 postscript figures and 3 tables. AAStex macros include

    On the Origin of Ultraviolet Emission and the Accretion Model of Low-luminosity AGNs

    Full text link
    Low-luminosity active galactic nuclei (LLAGNs) are generally believed to be powered by an inner radiatively inefficient, advection-dominated accretion flow (ADAF), an outer truncated thin disk, and a jet. Maoz (2007) recently challenged this picture based on the observation that the strength of ultraviolet emission relative to the X-ray and radio bands does not depart from empirical trends defined by more luminous sources. He advocates that AGNs across all luminosities have essentially the same accretion and radiative processes, which in luminous sources are described by a standard optically thick, geometrically thin disk. We calculate ADAF models and demonstrate that they can successfully fit the observed spectral energy distributions of the LLAGNs in Maoz's sample. Our model naturally accommodates the radio and X-ray emission, and the ultraviolet flux is well explained by a combination of the first-order Compton scattering in the ADAF, synchrotron emission in the jet, and black body emission in the truncated thin disk. It is premature to dismiss the ADAF model for LLAGNs. The UV data can be fit equally well using a standard thin disk, but an additional corona and jet would be required to account for the X-ray and radio emission. We argue that there are strong theoretical reasons to prefer the ADAF model over the thin disk scenario. We discuss testable predictions that can potentially discriminate between the two accretion models.Comment: 20 pages, 3 figures; ApJ in pres

    Revisiting the "Fundamental Plane" of Black Hole Activity at Extremely Low Luminosities

    Full text link
    We investigate the origin of the X-ray emission in low-luminosity AGNs (LLAGNs). Yuan & Cui (2005) predicted that the X-ray emission should originate from jets rather than from an advection-dominated accretion flow (ADAF) when the X-ray luminosity LXL_{\rm X} of the source is below a critical value of LX,crit106LEddL_{\rm X,crit} \approx 10^{-6}L_{\rm Edd}. This prediction implies that the X-ray spectrum in such sources should be fitted by jets rather than ADAFs. Furthermore, below LX,critL_{\rm X,crit} the correlation between radio (LRL_{\rm R}) and X-ray (LXL_{\rm X}) luminosities and the black hole mass (MM)--the so-called fundamental plane of black hole activity--should deviate from the general correlation obtained by Merloni, Heinz & Di Matteo (2003) and become steeper. The Merloni et al. correlation is described by logLR=0.6logLX+0.78logM+7.33{\rm log}L_{\rm R} =0.6{\rm log}L_{\rm X}+0.78{\rm log}M+7.33, while the predicted correlation is logLR=1.23logLX+0.25logM13.45{\rm log}L_{\rm R}=1.23{\rm log}L_{\rm X} +0.25{\rm log}M-13.45. We collect data from the literature to check the validity of these two expectations. We find that among the 16 LLAGNs with good X-ray and radio spectra, 13 are consistent with the Yuan & Cui prediction. For the 22 LLAGNs with LX<LX,critL_{\rm X} < L_{\rm X,crit}, the fundamental plane correlation is described by logLR=1.22logLX+0.23logM12.46{\rm log}L_{\rm R}=1.22{\rm log}L_{\rm X}+0.23{\rm log}M-12.46 , also in excellent agreement with the prediction.Comment: 24 pages, 2 tables, 3 figures; accepted by Ap

    Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings

    Get PDF
    AIM: Kidney diseases constitute a major health challenge, which requires non-invasive imaging to complement conventional approaches to diagnosis and monitoring. Several renal pathologies are associated with changes in kidney size, offering an opportunity for magnetic resonance imaging (MRI) biomarkers of disease. This work uses dynamic MRI and an automated bean-shaped model (ABSM) for longitudinal quantification of pathophysiologically relevant changes in kidney size. METHODS: A geometry-based ABSM was developed for kidney size measurements in rats using parametric MRI (T(2), T(2)* mapping). The ABSM approach was applied to longitudinal renal size quantification using occlusion of the (i) suprarenal aorta or (ii) the renal vein, (iii) increase in renal pelvis and intratubular pressure, and (iv) injection of an X-ray contrast medium into the thoracic aorta to induce pathophysiologically relevant changes in kidney size. RESULTS: The ABSM yielded renal size measurements with accuracy and precision equivalent to the manual segmentation, with >70-fold time savings. The automated method could detect a ~7% reduction (aortic occlusion)and a ~5%, a ~2% and a ~6% increase in kidney size (venous occlusion, pelvis and intratubular pressure increase and injection of X-ray contrast medium, respectively). These measurements were not affected by reduced image quality following administration of ferumoxytol. CONCLUSION: Dynamic MRI in conjunction with renal segmentation using an ABSM supports longitudinal quantification of changes in kidney size in pathophysiologically relevant experimental setups mimicking realistic clinical scenarios. This can potentially be instrumental for developing MRI-based diagnostic tools for various kidney disorders and for gaining new insight into mechanisms of renal pathophysiology
    corecore