490 research outputs found

    VERITAS Studies of the Supernova Remnants Cas A and IC 443

    Full text link
    VERITAS observed the supernova remnants Cassiopeia A (Cas A) and IC 443 during 2007, resulting in strong TeV detections of both sources. Cas A is a young remnant, and bright in both the radio and nonthermal X-rays, both tracers of cosmic-ray electrons. IC 443 is a middle-aged composite remnant interacting with a molecular cloud; the molecular cloud provides an enhanced density of target material for hadronic cosmic rays to produce TeV gamma rays via pion decay. The TeV morphology - point-like for Cas A and extended for IC 443 - will be discussed in the context of existing multiwavelength data on the remnants.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Get PDF
    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or neutral pions from protons.Comment: 12 pages, 9 figures, accepted by Apj, 24 June 200

    Investigating a Deep Learning Method to Analyze Images from Multiple Gamma-ray Telescopes

    Full text link
    Imaging atmospheric Cherenkov telescope (IACT) arrays record images from air showers initiated by gamma rays entering the atmosphere, allowing astrophysical sources to be observed at very high energies. To maximize IACT sensitivity, gamma-ray showers must be efficiently distinguished from the dominant background of cosmic-ray showers using images from multiple telescopes. A combination of convolutional neural networks (CNNs) with a recurrent neural network (RNN) has been proposed to perform this task. Using CTLearn, an open source Python package using deep learning to analyze data from IACTs, with simulated data from the upcoming Cherenkov Telescope Array (CTA), we implement a CNN-RNN network and find no evidence that sorting telescope images by total amplitude improves background rejection performance.Comment: 4 pages, 4 figures, Proceedings of the 2019 New York Scientific Data Summit (NYSDS

    Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system

    Full text link
    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma ray observatory, aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a novel aplanatic two-mirror optical design that provides a large field of view of 8 degrees and substantially improves the off-axis performance giving better angular resolution across all of the field of view with respect to single-mirror telescopes. The realization of the SC optical design implies the challenging production of large aspherical mirrors accompanied by a submillimeter-precision custom alignment system. In this contribution we report on the status of the implementation of the optical system on a prototype 9.7 m SC telescope located at the Fred Lawrence Whipple Observatory in southern Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea. All CTA contributions at arXiv:1709.0348
    • 

    corecore