8 research outputs found

    Characterizing Attention Cascades in WhatsApp Groups

    Full text link
    An important political and social phenomena discussed in several countries, like India and Brazil, is the use of WhatsApp to spread false or misleading content. However, little is known about the information dissemination process in WhatsApp groups. Attention affects the dissemination of information in WhatsApp groups, determining what topics or subjects are more attractive to participants of a group. In this paper, we characterize and analyze how attention propagates among the participants of a WhatsApp group. An attention cascade begins when a user asserts a topic in a message to the group, which could include written text, photos, or links to articles online. Others then propagate the information by responding to it. We analyzed attention cascades in more than 1.7 million messages posted in 120 groups over one year. Our analysis focused on the structural and temporal evolution of attention cascades as well as on the behavior of users that participate in them. We found specific characteristics in cascades associated with groups that discuss political subjects and false information. For instance, we observe that cascades with false information tend to be deeper, reach more users, and last longer in political groups than in non-political groups.Comment: Accepted as a full paper at the 11th International ACM Web Science Conference (WebSci 2019). Please cite the WebSci versio

    Using sentiment analysis to define twitter political users’ classes and their homophily during the 2016 American presidential election

    No full text
    Abstract This paper proposes an analysis of political homophily among Twitter users during the 2016 American Presidential Election. We collected 4.9 million tweets of 18,450 users and their contact network from August 2016 to November 2016. We defined six user classes regarding their sentiment towards Donald Trump and Hillary Clinton: whatever, Trump supporter, Hillary supporter, positive, neutral, and negative. Next, we analyzed their political homophily in three scenarios. Firstly, we analyzed the Twitter follow, mention and retweet connections either unidirectional and reciprocal. In the second scenario, we analyzed multiplex connections, and in the third one, we analyzed friendships with similar speeches. Our results showed that negative users, users supporting Trump, and users supporting Hillary had homophily in all analyzed scenarios. We also found out that the homophily level increase when there are reciprocal connections, similar speeches, or multiplex connections

    NĂşcleos de Ensino da Unesp: artigos 2008

    No full text
    Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq
    corecore