7 research outputs found

    The Insecticide Imidacloprid Decreases Nannotrigona Stingless Bee Survival and Food Consumption and Modulates the Expression of Detoxification and Immune-Related Genes

    No full text
    Stingless bees are ecologically and economically important species in the tropics and subtropics, but there has been little research on the characterization of detoxification systems and immune responses within them. This is critical for understanding their responses to, and defenses against, a variety of environmental stresses, including agrochemicals. Therefore, we studied the detoxification and immune responses of a stingless bee, Nanotrigona perilampoides, which is an important stingless bee that is widely distributed throughout Mexico, including urban areas, and has the potential to be used in commercial pollination. We first determined the LC50 of the neonicotinoid insecticide imidacloprid for foragers of N. perilampoides, then chronically exposed bees for 10 days to imidacloprid at two field-realistic concentrations, LC10 (0.45 ng/µL) or LC20 (0.74 ng/µL), which are respectively 2.7 and 1.3-fold lower than the residues of imidacloprid that have been found in honey (6 ng/g) in central Mexico. We found that exposing N. perilampoides stingless bees to imidacloprid at these concentrations markedly reduced bee survival and food consumption, revealing the great sensitivity of this stingless bee to the insecticide in comparison to honey bees. The expression of detoxification (GSTD1) and immune-related genes (abaecin, defensin1, and hymenopteacin) in N. perilampoides also changed over time in response to imidacloprid. Gene expression was always lower in bees after 8 days of exposure to imidacloprid (LC10 or LC20) than it was after 4 days. Our results demonstrate that N. perilampoides stingless bees are extremely sensitive to imidacloprid, even at low concentrations, and provide greater insight into how stingless bees respond to pesticide toxicity. This is the first study of its kind to look at detoxification systems and immune responses in Mexican stingless bees, an ecologically and economically important taxon

    Transcriptomic analysis reveals key transcription factors associated to drought tolerance in a wild papaya (Carica papaya) genotype.

    No full text
    Most of the commercial papaya genotypes show susceptibility to water deficit stress and require high volumes of irrigation water to yield properly. To tackle this problem, we have collected wild native genotypes of Carica papaya that have proved to show better physiological performance under water deficit stress than the commercial cultivar grown in Mexico. In the present study, plants from a wild Carica papaya genotype and a commercial genotype were subjected to water deficit stress (WDS), and their response was characterized in physiological and molecular terms. The physiological parameters measured (water potential, photosynthesis, Fv/Fm and electrolyte leakage) confirmed that the papaya wild genotype showed better physiological responses than the commercial one when exposed to WDS. Subsequently, RNA-Seq was performed for 4 cDNA libraries in both genotypes (susceptible and tolerant) under well-watered conditions, and when they were subjected to WDS for 14 days. Consistently, differential expression analysis revealed that after 14 days of WDS, the wild tolerant genotype had a higher number of up-regulated genes, and a higher number of transcription factors (TF) that were differentially expressed in response to WDS, than the commercial genotype. Thus, six TF genes (CpHSF, CpMYB, CpNAC, CpNFY-A, CpERF and CpWRKY) were selected for further qRT-PCR analysis as they were highly expressed in response to WDS in the wild papaya genotype. qRT-PCR results confirmed that the wild genotype had higher expression levels (REL) in all 6 TF genes than the commercial genotype. Our transcriptomic analysis should help to unravel candidate genes that may be useful in the development of new drought-tolerant cultivars of this important tropical crop

    Insights into the Molecular Basis of Huanglongbing Tolerance in Persian Lime (<i>Citrus latifolia</i> Tan.) through a Transcriptomic Approach

    No full text
    Huanglongbing (HLB) is a vascular disease of Citrus caused by three species of the α-proteobacteria “Candidatus Liberibacter”, with “Candidatus Liberibacter asiaticus” (CLas) being the most widespread and the one causing significant economic losses in citrus-producing regions worldwide. However, Persian lime (Citrus latifolia Tanaka) has shown tolerance to the disease. To understand the molecular mechanisms of this tolerance, transcriptomic analysis of HLB was performed using asymptomatic and symptomatic leaves. RNA-Seq analysis revealed 652 differentially expressed genes (DEGs) in response to CLas infection, of which 457 were upregulated and 195 were downregulated. KEGG analysis revealed that after CLas infection, some DEGs were present in the plant–pathogen interaction and in the starch and sucrose metabolism pathways. DEGs present in the plant–pathogen interaction pathway suggests that tolerance against HLB in Persian lime could be mediated, at least partly, by the ClRSP2 and ClHSP90 genes. Previous reports documented that RSP2 and HSP90 showed low expression in susceptible citrus genotypes. Regarding the starch and sucrose metabolism pathways, some genes were identified as being related to the imbalance of starch accumulation. On the other hand, eight biotic stress-related genes were selected for further RT-qPCR analysis to validate our results. RT-qPCR results confirmed that symptomatic HLB leaves had high relative expression levels of the ClPR1, ClNFP, ClDR27, and ClSRK genes, whereas the ClHSL1, ClRPP13, ClPDR1, and ClNAC genes were expressed at lower levels than those from HLB asymptomatic leaves. Taken together, the present transcriptomic analysis contributes to the understanding of the CLas-Persian lime interaction in its natural environment and may set the basis for developing strategies for the integrated management of this important Citrus disease through the identification of blanks for genetic improvement

    Phylogenetic and Pathogenic Evidence Reveals Novel Host–Pathogen Interactions between Species of <i>Lasiodiplodia</i> and <i>Citrus latifolia</i> Dieback Disease in Southern Mexico

    No full text
    Mexico ranks second in the world for Persian lime (Citrus latifolia) exports, making it the principal citrus exporter within the national citrus industry, exporting over 600,000 tons per year. However, diseases are the main factor reducing production, resulting in significant economic losses. Among these diseases, fungal diseases like dieback, caused by species of Lasiodiplodia, are an emerging issue in Persian lime. Symptoms include gummosis, twig and branch dieback, cankers, the necrosis of bark and wood, fruit mummification, and tree decline. The aim of this study was to investigate the occurrence and pathogenicity of the fungal species associated with twig and branch dieback, cankers, and decline of Persian lime trees in southern Mexico, and to elucidate the current status of the Lasiodiplodia species causing the disease in Mexico. During June, July, and August of 2023, a total of the 9229 Persian lime trees were inspected across 230 hectares of Persian lime orchards in southern Mexico, and symptoms of the disease were detected in 48.78% of the trees. Branches from 30 of these Persian lime trees were collected. Fungal isolates were obtained, resulting in a collection of 40 strains. The isolates were characterized molecularly and phylogenetically through the partial regions of four loci: the internal transcribed spacer region (ITS), the β-tubulin gene (tub2), the translation elongation factor 1-alpha gene (tef1-α), and the DNA-directed RNA polymerase II second largest subunit (rpb2). Additionally, pathogenicity was assessed, successfully completing Koch’s postulates on both detached Persian lime branches and certified 18-month-old Persian lime plants. Through multilocus molecular phylogenetic identification, pathogenicity, and virulence tests, five species were identified as causal agents: L. iraniensis, L. lignicola, L. mexicanensis, L. pseudotheobromae, and L. theobromae. This study demonstrates that in southern Mexico, at least five species of the genus Lasiodiplodia are responsible for dieback in Persian lime. Additionally, this is the first report of L. lignicola and L. mexicanensis as causal agents of the disease in citrus, indicating novel host interactions between species of Lasiodiplodia and C. latifolia

    Worldwide Disparities in Recovery of Cardiac Testing 1 Year Into COVID-19

    No full text
    BACKGROUND The extent to which health care systems have adapted to the COVID-19 pandemic to provide necessary cardiac diagnostic services is unknown.OBJECTIVES The aim of this study was to determine the impact of the pandemic on cardiac testing practices, volumes and types of diagnostic services, and perceived psychological stress to health care providers worldwide.METHODS The International Atomic Energy Agency conducted a worldwide survey assessing alterations from baseline in cardiovascular diagnostic care at the pandemic's onset and 1 year later. Multivariable regression was used to determine factors associated with procedure volume recovery.RESULTS Surveys were submitted from 669 centers in 107 countries. Worldwide reduction in cardiac procedure volumes of 64% from March 2019 to April 2020 recovered by April 2021 in high- and upper middle-income countries (recovery rates of 108% and 99%) but remained depressed in lower middle- and low-income countries (46% and 30% recovery). Although stress testing was used 12% less frequently in 2021 than in 2019, coronary computed tomographic angiography was used 14% more, a trend also seen for other advanced cardiac imaging modalities (positron emission tomography and magnetic resonance; 22%-25% increases). Pandemic-related psychological stress was estimated to have affected nearly 40% of staff, impacting patient care at 78% of sites. In multivariable regression, only lower-income status and physicians' psychological stress were significant in predicting recovery of cardiac testing.CONCLUSIONS Cardiac diagnostic testing has yet to recover to prepandemic levels in lower-income countries. Worldwide, the decrease in standard stress testing is offset by greater use of advanced cardiac imaging modalities. Pandemic-related psychological stress among providers is widespread and associated with poor recovery of cardiac testing. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation
    corecore