48 research outputs found

    The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden

    Get PDF
    River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed

    Seasonal variation of water uptake of a Quercus suber tree in Central Portugal

    Get PDF
    Hydraulic redistribution (HR) is the phenomenon where plant roots transfer water between soil horizons of different water potential. When dry soil is a stronger sink for water loss from the plant than transpiration, water absorbed by roots in wetter soil horizons is transferred toward, and exuded into dry soil via flow reversals through the roots. Reverse flow is a good marker of HR and can serve as a useful tool to study it over the long-term. Seasonal variation of water uptake of a Quercus suber tree was studied from late winter through autumn 2003 at Rio Frio near Lisbon, Portugal. Sap flow was measured in five small shallow roots (diameter of 3–4 cm), 1 to 2 m from the tree trunk and in four azimuths and at different xylem depths at the trunk base, using the heat field deformation method (HFD). The pattern of sap flow differed among lateral roots as soil dried with constant positive flow in three roots and reverse flow in two other roots during the night when transpiration ceased. Rain modified the pattern of flow in these two roots by eliminating reverse flow and substantially increasing water uptake for transpiration during the day. The increase in water uptake in three other roots following rain was not so substantial. In addition, the flux in individual roots was correlated to different degrees with the flux at different radial depths and azimuthal directions in trunk xylem. The flow in outer trunk xylem seemed to be mostly consistent with water movement from surface soil horizons, whereas deep roots seemed to supply water to the whole cross-section of sapwood. When water flow substantially decreased in shallow lateral roots and the outer stem xylem during drought, water flow in the inner sapwood was maintained, presumably due to its direct connection to deep roots. Results also suggest the importance of the sap flow sensor placement, in relation to sinker roots, as to whether lateral roots might be found to exhibit reverse flow during drought. This study is consistent with the dimorphic rooting habit of Quercus suber trees in which deep roots access groundwater to supply superficial roots and the whole tree, when shallow soil layers were dry

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: Reflections and a horizon scan

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has becomecommonplace and confers an ability to understand mechanistic processes,develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative.Using a 'horizon scan',we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), aswell as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmentalmanagementand ecosystemrestoration,we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users

    Giant cacti: Isotopic recorders of climate variation in warm deserts of the Americas

    Full text link
    The plant family Cactaceae is considered among the most threatened groups of organisms on the planet. The threatened status of the cacti family has created a renewed interest in the highly evolved physiological and morphological traits that underpin their persistence in some of the harshest subtropical environments in the Americas. Among the most important anatomical features of cacti is the modification of leaves into spines, and previous work has shown that the stable isotope chemistry of cacti spines records potential variations in stem water balance, stress, and Crassulacean acid metabolism (CAM). We review the opportunities, challenges, and pitfalls in measuring δ 13C, δ 2H, and δ 18O ratios captured in spine tissues that potentially reflect temporal and spatial patterns of stomatal conductance, internal to atmospheric CO2 partial pressures, and subsequent patterns of photosynthetic gas exchange. We then evaluate the challenges in stable isotope analysis in spine tissues related to variation in CAM expression, stem water compartmentalization, and spine whole-tissue composition among other factors. Finally, we describe how the analysis of all three isotopes can be used in combination to provide potentially robust analysis of photosynthetic function in cacti, and other succulent-stemmed taxa across broad spatio-temporal environmental gradients

    Relationships among climate, stem growth, and biomass δ13C in the giant saguaro cactus (Carnegiea gigantea)

    Full text link
    Giant saguaro (Carnegiea gigantea) is one of the longest-lived and massive cacti species in the Americas. They occur throughout the Sonoran Desert region with a distribution spanning a five-fold gradient in mean annual precipitation. Relationships between fitness traits, including stem growth, and spatio-temporal climate patterns are still poorly understood in saguaro, but are assumed to be largely coupled to summer precipitation. To better understand patterns of climate sensitivity in giant saguaro, annual stem growth, carbon isotope ratios (δ13C) in spine tissues, and seasonal variation in stem volume, a proxy for stem water storage, were evaluated over a single growing season (2014) in six widely distributed populations in the northern Sonoran Desert, and over four consecutive growing seasons (2013–2016) in two populations with differences in mean annual precipitation and site moisture (Mi), defined as precipitation amount divided by mean atmospheric vapor pressure deficit. We hypothesized that saguaro growth and δ13C would be coupled to a complex suite of climate conditions that include winter precipitation and aridity. Annual stem growth of all populations was generally better correlated to Mi than precipitation alone and was best correlated with Mi measured over the hydrologic year, October 2013–September 2014 (F = 39.8, P < 0.0001). Likewise, mean δ13C increased with Mi, with the highest correlation with Mi calculated for July 2013–August 2014 (F = 38.4.0, P < 0.0001). Annual stem growth measured across all populations was well correlated to δ13C in spines produced during the current year of growth (F = 36.3, P < 0.0001). Annual variation in stem growth appeared to reflect annual variation in mean stem volume measured monthly from the summer of the previous year to the summer of the current year of growth. Results suggest that stem growth and photosynthetic physiology recorded by δ13C are coupled to a complex suite of climate conditions with a strong legacy effect from the previous summer and winter. These findings provide new insight on the effects of summer and winter drought and a warming climate on the photosynthesis, growth, and fitness of giant saguaro. © 2018 The Authors

    Age-growth relationships, temperature sensitivity and palaeoclimate-archive potential of the threatened Altiplano cactus Echinopsis atacamensis

    Full text link
    The tall (>4 m), charismatic and threatened columnar cacti, pasacana [Echinopsis atacamensis (Vaupel) Friedrich & G.D. Rowley)], grows on the Bolivian Altiplano and provides environmental and economic value to these extremely cold, arid and high-elevation (∼4000 m) ecosystems. Yet very little is known about their growth rates, ages, demography and climate sensitivity. Using radiocarbon in spine dating time series, we quantitatively estimate the growth rate (5.8 and 8.3 cm yr-1) and age of these cacti (up to 430 years). These data and our field measurements yield a survivorship curve that suggests precipitation on the Altiplano is important for this species' recruitment. Our results also reveal a relationship between nighttime temperatures on the Altiplano and the variation in oxygen isotope values in spines (δ18O). The annual δ18O minimums from 58 years of in-series spine tissue from pasacana on the Altiplano provides at least decadal proxy records of temperature (r = 0.58; P < 0.0001), and evidence suggests that there are longer records connecting modern Altiplano temperatures to sea-surface temperatures (SSTs) in the Atlantic Ocean. While the role of Atlantic SSTs on the South American Summer Monsoon (SASM) and precipitation on the Bolivian Altiplano is well described, the impact of SSTs on Altiplano temperatures is disputed. Understanding the modern impact of SSTs on temperature on the Altiplano is important to both understand the impact of future climate change on pasacana cactus and to understand past climate changes on the Altiplano. This is the best quantitative evidence to date of one of the oldest known cactus in the world, although there are likely many older cacti on the Altiplano, or elsewhere, that have not been sampled yet. Together with growth, isotope and age data, this information should lead to better management and conservation outcomes for this threatened species and the Altiplano ecosystem
    corecore