176 research outputs found

    Numerical simulation of a viscoelastic fluid with anisotropic heat conduction

    Get PDF
    For the nonisothermal flow of a viscoelastic fluid we have taken into account temperature dependency of the relaxation times and the viscosities in the constitutive equation for the stress. In the energy equation the heat flux is specified by Fourier's law, where anisotropic heat conduction has been taken into account. Furthermore one has to specify which part of the stress work is dissipated and which part is stored as elastic energy. The equations are solved with a finite element method for the balance equations and a streamline integration method for the constitutive equation. The influence of the Deborah number, the PĂ©clet number and the cooling temperature are examined in a flow through a 4 to 1 contraction

    Constitutive framework for rheologically complex interfaces with an application to elastoviscoplasticity

    Get PDF
    A framework is presented for the formulation of a class of continuum constitutive models for sharp interfaces with non-linear viscoelastic behaviour due to a considerable isotropic interfacial microstructure. For the formulation of a thermodynamically consistent elastoviscoplastic interface constitutive model we adapt an approach successful in describing the behaviour of bulk polymer glasses. The model has a clear separation between dilatation and shear, and is used to predict phenomena related to the plasticity of interfaces observed in the experimental literature, which is relevant for many applications. Stress–strain predictions in standard interfacial rheological flows, i.e. shear and dilatation, are investigated numerically. A predominantly elastic response is obtained at small deformations, with a transition to primarily plastic flow at high stress levels. In interfacial shear flow, strain softening and eventually a plastic plateau occur upon further deformation beyond the yield point. The yield stress and strain and (the relative strength of) the stress overshoot in interfacial shear flow are shown to be controlled by two dimensionless groups of parameters in the model. In interfacial dilatation, the model predicts elastoviscoplastic behaviour with a stress maximum and a decreasing stress without a plateau at even larger deformations. These phenomena are studied for various choices for the parameters in the model
    • …
    corecore