6 research outputs found
Recommended from our members
Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations.
The gut microbiome likely plays a role in the etiology of multiple health conditions, especially those affecting the gastrointestinal tract. Little consensus exists as to the best, standard methods to collect fecal samples for future microbiome analysis. We evaluated three distinct populations (N = 132 participants) using 16S rRNA gene amplicon sequencing data to investigate the reproducibility, stability, and accuracy of microbial profiles in fecal samples collected and stored via fecal occult blood test (FOBT) or Flinders Technology Associates (FTA) cards, fecal immunochemical tests (FIT) tubes, 70% and 95% ethanol, RNAlater, or with no solution. For each collection method, based on relative abundance of select phyla and genera, two alpha diversity metrics, and four beta diversity metrics, we calculated intraclass correlation coefficients (ICCs) to estimate reproducibility and stability, and Spearman correlation coefficients (SCCs) to estimate accuracy of the fecal microbial profile. Comparing duplicate samples, reproducibility ICCs for all collection methods were excellent (ICCs ≥75%). After 4-7 days at ambient temperature, ICCs for microbial profile stability were excellent (≥75%) for most collection methods, except those collected via no-solution and 70% ethanol. SCCs comparing each collection method to immediately-frozen no-solution samples ranged from fair to excellent for most methods; however, accuracy of genus-level relative abundances differed by collection method. Our findings, taken together with previous studies and feasibility considerations, indicated that FOBT/FTA cards, FIT tubes, 95% ethanol, and RNAlater are excellent choices for fecal sample collection methods in future microbiome studies. Furthermore, establishing standard collection methods across studies is highly desirable
Associations of fecal microbial profiles with breast cancer and non-malignant breast disease in the Ghana Breast Health Study
The gut microbiota may play a role in breast cancer etiology by regulating hormonal, metabolic and immunologic pathways. We investigated associations of fecal bacteria with breast cancer and nonmalignant breast disease in a case-control study conducted in Ghana, a country with rising breast cancer incidence and mortality. To do this, we sequenced the V4 region of the 16S rRNA gene to characterize bacteria in fecal samples collected at the time of breast biopsy (N = 379 breast cancer cases, N = 102 nonmalignant breast disease cases, N = 414 population-based controls). We estimated associations of alpha diversity (observed amplicon sequence variants [ASVs], Shannon index, and Faith's phylogenetic diversity), beta diversity (Bray-Curtis and unweighted/weighted UniFrac distance), and the presence and relative abundance of select taxa with breast cancer and nonmalignant breast disease using multivariable unconditional polytomous logistic regression. All alpha diversity metrics were strongly, inversely associated with odds of breast cancer and for those in the highest relative to lowest tertile of observed ASVs, the odds ratio (95% confidence interval) was 0.21 (0.13-0.36; Ptrend < .001). Alpha diversity associations were similar for nonmalignant breast disease and breast cancer grade/molecular subtype. All beta diversity distance matrices and multiple taxa with possible estrogen-conjugating and immune-related functions were strongly associated with breast cancer (all Ps < .001). There were no statistically significant differences between breast cancer and nonmalignant breast disease cases in any microbiota metric. In conclusion, fecal bacterial characteristics were strongly and similarly associated with breast cancer and nonmalignant breast disease. Our findings provide novel insight into potential microbially-mediated mechanisms of breast disease
Recommended from our members
Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations
The gut microbiome likely plays a role in the etiology of multiple health conditions, especially those affecting the gastrointestinal tract. Little consensus exists as to the best, standard methods to collect fecal samples for future microbiome analysis. We evaluated three distinct populations (N = 132 participants) using 16S rRNA gene amplicon sequencing data to investigate the reproducibility, stability, and accuracy of microbial profiles in fecal samples collected and stored via fecal occult blood test (FOBT) or Flinders Technology Associates (FTA) cards, fecal immunochemical tests (FIT) tubes, 70% and 95% ethanol, RNAlater, or with no solution. For each collection method, based on relative abundance of select phyla and genera, two alpha diversity metrics, and four beta diversity metrics, we calculated intraclass correlation coefficients (ICCs) to estimate reproducibility and stability, and Spearman correlation coefficients (SCCs) to estimate accuracy of the fecal microbial profile. Comparing duplicate samples, reproducibility ICCs for all collection methods were excellent (ICCs ≥75%). After 4–7 days at ambient temperature, ICCs for microbial profile stability were excellent (≥75%) for most collection methods, except those collected via no-solution and 70% ethanol. SCCs comparing each collection method to immediately-frozen no-solution samples ranged from fair to excellent for most methods; however, accuracy of genus-level relative abundances differed by collection method. Our findings, taken together with previous studies and feasibility considerations, indicated that FOBT/FTA cards, FIT tubes, 95% ethanol, and RNAlater are excellent choices for fecal sample collection methods in future microbiome studies. Furthermore, establishing standard collection methods across studies is highly desirable
Recommended from our members
Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations.
The gut microbiome likely plays a role in the etiology of multiple health conditions, especially those affecting the gastrointestinal tract. Little consensus exists as to the best, standard methods to collect fecal samples for future microbiome analysis. We evaluated three distinct populations (N = 132 participants) using 16S rRNA gene amplicon sequencing data to investigate the reproducibility, stability, and accuracy of microbial profiles in fecal samples collected and stored via fecal occult blood test (FOBT) or Flinders Technology Associates (FTA) cards, fecal immunochemical tests (FIT) tubes, 70% and 95% ethanol, RNAlater, or with no solution. For each collection method, based on relative abundance of select phyla and genera, two alpha diversity metrics, and four beta diversity metrics, we calculated intraclass correlation coefficients (ICCs) to estimate reproducibility and stability, and Spearman correlation coefficients (SCCs) to estimate accuracy of the fecal microbial profile. Comparing duplicate samples, reproducibility ICCs for all collection methods were excellent (ICCs ≥75%). After 4-7 days at ambient temperature, ICCs for microbial profile stability were excellent (≥75%) for most collection methods, except those collected via no-solution and 70% ethanol. SCCs comparing each collection method to immediately-frozen no-solution samples ranged from fair to excellent for most methods; however, accuracy of genus-level relative abundances differed by collection method. Our findings, taken together with previous studies and feasibility considerations, indicated that FOBT/FTA cards, FIT tubes, 95% ethanol, and RNAlater are excellent choices for fecal sample collection methods in future microbiome studies. Furthermore, establishing standard collection methods across studies is highly desirable
Comparison of fecal and oral collection methods for studies of the human microbiota in two Iranian cohorts.
BackgroundTo initiate fecal and oral collections in prospective cohort studies for microbial analyses, it is essential to understand how field conditions and geographic differences may impact microbial communities. This study aimed to investigate the impact of fecal and oral sample collection methods and room temperature storage on collection samples for studies of the human microbiota.ResultsWe collected fecal and oral samples from participants in two Iranian cohorts located in rural Yazd (n = 46) and urban Gonbad (n = 38) and investigated room temperature stability over 4 days of fecal (RNAlater and fecal occult blood test [FOBT] cards) and comparability of fecal and oral (OMNIgene ORAL kits and Scope mouthwash) collection methods. We calculated interclass correlation coefficients (ICCs) based on 3 alpha and 4 beta diversity metrics and the relative abundance of 3 phyla. After 4 days at room temperature, fecal stability ICCs and ICCs for Scope mouthwash were generally high for all microbial metrics. Similarly, the fecal comparability ICCs for RNAlater and FOBT cards were high, ranging from 0.63 (95% CI: 0.46, 0.75) for the relative abundance of Firmicutes to 0.93 (95% CI: 0.89, 0.96) for unweighted Unifrac. Comparability ICCs for OMNIgene ORAL and Scope mouthwash were lower than fecal ICCs, ranging from 0.55 (95% CI: 0.36, 0.70) for the Shannon index to 0.79 (95% CI: 0.69, 0.86) for Bray-Curtis. Overall, RNAlater, FOBT cards and Scope mouthwash were stable up to 4 days at room temperature. Samples collected using FOBT cards were generally comparable to RNAlater while the OMNIgene ORAL were less similar to Scope mouthwash.ConclusionsAs microbiome measures for feces samples collected using RNAlater, FOBT cards and oral samples collected using Scope mouthwash were stable over four days at room temperature, these would be most appropriate for microbial analyses in these populations. However, one collection method should be consistently since each method may induce some differences