8,435 research outputs found

    Euclidean Supersymmetry, Twisting and Topological Sigma Models

    Full text link
    We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N=2, the R-symmetry is SO(2)\times SO(1,1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N=2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.Comment: 8 page

    Observations of directional gamma prime coarsening during engine operation

    Get PDF
    Two alloys with negative mismatch parameters, NASAIR 100 and a modified NASAIR 100 called Alloy 3 were run as turbine blades in an experimental ground based Garret TFE731 engine for up to 200 hr. The directional coarsening of gamma prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to be rafted normal to the centrifugal stress axis over much of the span, but near the surfaces, the blades were found to be rafted parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on raft formation are shown

    New Gauged N=8, D=4 Supergravities

    Full text link
    New gaugings of four dimensional N=8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N=2 supersymmetry and in which the gauge group is broken to SU(3)xU(1)2SU(3)xU(1)^2. Previous gaugings used the form of the ungauged action which is invariant under a rigid SL(8,R)SL(8,R) symmetry and promoted a 28-dimensional subgroup (SO(8),SO(p,8p)SO(8),SO(p,8-p) or the non-semi-simple contraction CSO(p,q,8pq)CSO(p,q,8-p-q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU(8)SU^*(8) instead of SL(8,R)SL(8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU(8)SU^*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p,82p)CSO(2p,8-2p) groups, denoted CSO(2p,82p)CSO^*(2p,8-2p), and the new theories have a rigid SU(2) symmetry. The five dimensional gauged N=8 supergravities are dimensionally reduced to D=4. The D=5,SO(p,6p)D=5,SO(p,6-p) gauge theories reduce, after a duality transformation, to the D=4,CSO(p,6p,2)D=4,CSO(p,6-p,2) gauging while the SO(6)SO^*(6) gauge theory reduces to the D=4,CSO(6,2)D=4, CSO^*(6,2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualised to forms with different gauge groups.Comment: 33 pages. Reference adde

    On the construction of variant supergravities in D=11, D=10

    Get PDF
    We construct with a geometric procedure the supersymmetry transformation laws and Lagrangian for all the ``variant'' D=11 and D=10 Type IIA supergravities. We identify into our classification the D=11 and D=10 Type IIA ``variant'' theories first introduced by Hull performing T-duality transformation on both spacelike and timelike circles. We find in addition a set of D=10 Type IIA ``variant'' supergravities that can not be obtained trivially from eleven dimensions compactifying on a circle.Comment: 21 pages, Late

    Computer program for determining mass properties of a rigid structure

    Get PDF
    A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes

    D=6, N=2, F(4)-Supergravity with supersymmetric de Sitter Background

    Full text link
    We show that there exists a supersymmetric de Sitter background for the D=6, N=2, F(4) supergravity preserving the compact R-symmetry and gauging with respect to the conventional Anti de Sitter version of the theory. We construct the gauged matter coupled F(4) de Sitter supergravity explicitly and show that it contains ghosts in the vector sector.Comment: 19 pages, Late

    Untangling the Conceptual Isssues Raised in Reydon and Scholz’s Critique of Organizational Ecology and Darwinian Populations

    Get PDF
    Reydon and Scholz raise doubts about the Darwinian status of organizational ecology by arguing that Darwinian principles are not applicable to organizational populations. Although their critique of organizational ecology’s typological essentialism is correct, they go on to reject the Darwinian status of organizational populations. This paper claims that the distinction between replicators and interactors, raised in modern philosophy of biology but not discussed by Reydon and Scholz, points the way forward for organizational ecologists. It is possible to conceptualise evolving Darwinian populations providing the inheritance mechanism is appropriately specified. By this approach, adaptation and selection are no longer dichotomised, and the evolutionary significance of knowledge transmission is highlightedPeer reviewe
    corecore