11,140 research outputs found

    Quantum Mechanics of the Doubled Torus

    Get PDF
    We investigate the quantum mechanics of the doubled torus system, introduced by Hull [1] to describe T-folds in a more geometric way. Classically, this system consists of a world-sheet Lagrangian together with some constraints, which reduce the number of degrees of freedom to the correct physical number. We consider this system from the point of view of constrained Hamiltonian dynamics. In this case the constraints are second class, and we can quantize on the constrained surface using Dirac brackets. We perform the quantization for a simple T-fold background and compare to results for the conventional non-doubled torus system. Finally, we formulate a consistent supersymmetric version of the doubled torus system, including supersymmetric constraints.Comment: 31 pages, 1 figure; v2: references added, minor corrections to final sectio

    A Geometry for Non-Geometric String Backgrounds

    Full text link
    A geometric string solution has background fields in overlapping coordinate patches related by diffeomorphisms and gauge transformations, while for a non-geometric background this is generalised to allow transition functions involving duality transformations. Non-geometric string backgrounds arise from T-duals and mirrors of flux compactifications, from reductions with duality twists and from asymmetric orbifolds. Strings in ` T-fold' backgrounds with a local nn-torus fibration and T-duality transition functions in O(n,n;Z)O(n,n;\Z) are formulated in an enlarged space with a T2nT^{2n} fibration which is geometric, with spacetime emerging locally from a choice of a TnT^n submanifold of each T2nT^{2n} fibre, so that it is a subspace or brane embedded in the enlarged space. T-duality acts by changing to a different TnT^n subspace of T2nT^{2n}. For a geometric background, the local choices of TnT^n fit together to give a spacetime which is a TnT^n bundle, while for non-geometric string backgrounds they do not fit together to form a manifold. In such cases spacetime geometry only makes sense locally, and the global structure involves the doubled geometry. For open strings, generalised D-branes wrap a TnT^n subspace of each T2nT^{2n} fibre and the physical D-brane is the part of the part of the physical space lying in the generalised D-brane subspace.Comment: 28 Pages. Minor change

    Nongeometry, Duality Twists, and the Worldsheet

    Full text link
    In this paper, we use orbifold methods to construct nongeometric backgrounds, and argue that they correspond to the spacetimes discussed in \cite{dh,wwf}. More precisely, we make explicit through several examples the connection between interpolating orbifolds and spacetime duality twists. We argue that generic nongeometric backgrounds arising from duality twists will not have simple orbifold constructions and then proceed to construct several examples which do have a consistent worldsheet description.Comment: v2-references added; v3-minor correction (eqn. 4.17

    Generalised Geometry for M-Theory

    Get PDF
    Generalised geometry studies structures on a d-dimensional manifold with a metric and 2-form gauge field on which there is a natural action of the group SO(d,d). This is generalised to d-dimensional manifolds with a metric and 3-form gauge field on which there is a natural action of the group EdE_{d}. This provides a framework for the discussion of M-theory solutions with flux. A different generalisation is to d-dimensional manifolds with a metric, 2-form gauge field and a set of p-forms for pp either odd or even on which there is a natural action of the group Ed+1E_{d+1}. This is useful for type IIA or IIB string solutions with flux. Further generalisations give extended tangent bundles and extended spin bundles relevant for non-geometric backgrounds. Special structures that arise for supersymmetric backgrounds are discussed.Comment: 31 page

    Flux Compactifications of M-Theory on Twisted Tori

    Full text link
    We find the bosonic sector of the gauged supergravities that are obtained from 11-dimensional supergravity by Scherk-Schwarz dimensional reduction with flux to any dimension D. We show that, if certain obstructions are absent, the Scherk-Schwarz ansatz for a finite set of D-dimensional fields can be extended to a full compactification of M-theory, including an infinite tower of Kaluza-Klein fields. The internal space is obtained from a group manifold (which may be non-compact) by a discrete identification. We discuss the symmetry algebra and the symmetry breaking patterns and illustrate these with particular examples. We discuss the action of U-duality on these theories in terms of symmetries of the D-dimensional supergravity, and argue that in general it will take geometric flux compactifications to M-theory on non-geometric backgrounds, such as U-folds with U-duality transition functions.Comment: Latex, 47 page

    Timelike Hopf Duality and Type IIA^* String Solutions

    Get PDF
    The usual T-duality that relates the type IIA and IIB theories compactified on circles of inversely-related radii does not operate if the dimensional reduction is performed on the time direction rather than a spatial one. This observation led to the recent proposal that there might exist two further ten-dimensional theories, namely type IIA^* and type IIB^*, related to type IIB and type IIA respectively by a timelike dimensional reduction. In this paper we explore such dimensional reductions in cases where time is the coordinate of a non-trivial U(1) fibre bundle. We focus in particular on situations where there is an odd-dimensional anti-de Sitter spacetime AdS_{2n+1}, which can be described as a U(1) bundle over \widetilde{CP}^n, a non-compact version of CP^n corresponding to the coset manifold SU(n,1)/U(n). In particular, we study the AdS_5\times S^5 and AdS_7\times S^4 solutions of type IIB supergravity and eleven-dimensional supergravity. Applying a timelike Hopf T-duality transformation to the former provides a new solution of the type IIA^* theory, of the form \widetilde{CP}^2\times S^1\times S^5. We show how the Hopf-reduced solutions provide further examples of ``supersymmetry without supersymmetry.'' We also present a detailed discussion of the geometrical structure of the Hopf-fibred metric on AdS_{2n+1}, and its relation to the horospherical metric that arises in the AdS/CFT correspondence.Comment: Latex, 26 page

    Superstring partition functions in the doubled formalism

    Full text link
    Computation of superstring partition function for the non-linear sigma model on the product of a two-torus and its dual within the scope of the doubled formalism is presented. We verify that it reproduces the partition functions of the toroidally compactified type--IIA and type--IIB theories for appropriate choices of the GSO projection.Comment: 15 page

    Frame-like Geometry of Double Field Theory

    Full text link
    We relate two formulations of the recently constructed double field theory to a frame-like geometrical formalism developed by Siegel. A self-contained presentation of this formalism is given, including a discussion of the constraints and its solutions, and of the resulting Riemann tensor, Ricci tensor and curvature scalar. This curvature scalar can be used to define an action, and it is shown that this action is equivalent to that of double field theory.Comment: 35 pages, v2: minor corrections, to appear in J. Phys.

    Backreacted T-folds and non-geometric regions in configuration space

    Get PDF
    We provide the backreaction of the T-fold doubly T-dual to a background with NSNS three-form flux on a three-torus. We extend the backreacted T-fold to include cases with a flux localized in one out of three directions. We analyze the resulting monodromy domain walls and vortices. In these backgrounds, we give an analysis of the action of T-duality on observables like charges and Wilson surfaces. We analyze arguments for the existence of regions in the configuration space of second quantized string theory that cannot be reduced to geometry. Finally, by allowing for space-dependent moduli, we find a supergravity solution which is a T-fold with hyperbolic monodromies.Comment: 25 pages, 4 figures; v2: minor changes, reference adde
    corecore