205 research outputs found

    Massive IIA supergravities

    Full text link
    We perform a systematic search for all possible massive deformations of IIA supergravity in ten dimensions. We show that there exist exactly two possibilities: Romans supergravity and Howe-Lambert-West supergravity. Along the way we give the full details of the ten-dimensional superspace formulation of the latter. The scalar superfield at canonical mass dimension zero (whose lowest component is the dilaton), present in both Romans and massless IIA supergravities, is not introduced from the outset but its existence follows from a certain integrability condition implied by the Bianchi identities. This fact leads to the possibility for a certain topological modification of massless IIA, reflecting an analogous situation in eleven dimensions.Comment: 35 pages; v2: typos corrected, added eq. (A4

    Reissner-Nordstrom-de Sitter black hole, planar coordinates and dS/CFT

    Full text link
    We discuss the Reissner-Nordstrom-de Sitter black holes in the context of dS/CFT correspondence by using static and planar coordinates. The boundary stress tensor and the mass of the solutions are computed. Also, we investigate how the RG flow is changed for different foliations. The Kastor-Traschen multi-black hole solution is considered as well as AdS counterparts of these configurations. In particular, we find that in planar coordinates the black holes appear like punctures in the dual boundary theory.Comment: 30 pages, 3 eps figures, JHEP style v2: new references added, misprints correcte

    Triplectic Quantization: A Geometrically Covariant Description of the Sp(2)-symmetric Lagrangian Formalism

    Full text link
    A geometric description is given for the Sp(2) covariant version of the field-antifield quantization of general constrained systems in the Lagrangian formalism. We develop differential geometry on manifolds in which a basic set of coordinates (`fields') have two superpartners (`antifields'). The quantization on such a triplectic manifold requires introducing several specific differential-geometric objects, whose properties we study. These objects are then used to impose a set of generalized master-equations that ensure gauge-independence of the path integral. The theory thus quantized is shown to extend to a level-1 theory formulated on a manifold that includes antifields to the Lagrange multipliers. We also observe intriguing relations between triplectic and ordinary symplectic geometry.Comment: Revised version -- our treatment in Section 5 has been extended and several pedagogical notes inserted in Sections 2--4; more references added

    Topological A-Type Models with Flux

    Full text link
    We study deformations of the A-model in the presence of fluxes, by which we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ construction. Generically these are topological membrane models, and we show that the fluxes are related to deformations of the Courant bracket which generalize the twist by a closed 3-from HH, in the sense that satisfying the AKSZ master equation implies the integrability conditions for an almost generalized complex structure with respect to the deformed Courant bracket. In addition, the master equation imposes conditions on the fluxes that generalize dH=0dH=0. The membrane model can be defined on a large class of U(m)U(m)- and U(m)×U(m)U(m) \times U(m)-structure manifolds, including geometries inspired by (1,1)(1,1) supersymmetric σ\sigma-models with additional supersymmetries due to almost complex (but not necessarily complex) structures in the target space. Furthermore, we show that the model can be defined on three particular half-flat manifolds related to the Iwasawa manifold. When only HH-flux is turned on it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau with a closed 3-form turned on. The simplest deformation from the A-model is due to the (2,0)+(0,2)(2,0)+ (0,2) component of a non-trivial bb-field. The model is generically no longer evaluated on holomorphic maps and defines new topological invariants. Deformations due to HH-flux can be more radical, completely preventing auxiliary fields from being integrated out.Comment: 30 pages. v2: Improved Version. References added. v3: Minor changes, published in JHE

    Gauging and symplectic blowing up in nonlinear sigma-models: I. point singularities

    Full text link
    In this paper a two dimensional non-linear sigma model with a general symplectic manifold with isometry as target space is used to study symplectic blowing up of a point singularity on the zero level set of the moment map associated with a quasi-free Hamiltonian action. We discuss in general the relation between symplectic reduction and gauging of the symplectic isometries of the sigma model action. In the case of singular reduction, gauging has the same effect as blowing up the singular point by a small amount. Using the exponential mapping of the underlying metric, we are able to construct symplectic diffeomorphisms needed to glue the blow-up to the global reduced space which is regular, thus providing a transition from one symplectic sigma model to another one free of singularities.Comment: 32 pages, LaTex, THEP 93/24 (corrected and expanded(about 5 pages) version

    Nonsingular multidimensional cosmologies without fine tuning

    Get PDF
    Exact cosmological solutions for effective actions in D dimensions inspired by the tree-level superstring action are studied. For a certain range of free parameters existing in the model, nonsingular bouncing solutions are found. Among them, of particular interest can be open hyperbolic models, in which, without any fine tuning, the internal scale factor and the dilaton field (connected with string coupling in string theories) tend to constant values at late times. A cosmological singularity is avoided due to nonminimal dilaton-gravity coupling and, for D > 11, due to pure imaginary nature of the dilaton, which conforms to currently discussed unification models. The existence of such and similar solutions supports the opinion that the Universe had never undergone a stage driven by full-scale quantum gravity.Comment: Latex 2e, 9 page

    Mirrorfolds with K3 Fibrations

    Full text link
    We study a class of non-geometric string vacua realized as completely soluble superconformal field theory (SCFT). These models are defined as `interpolating orbifolds' of K3×S1K3 \times S^1 by the mirror transformation acting on the K3K3 fiber combined with the half-shift on the S1S^1-base. They are variants of the T-folds, the interpolating orbifolds by T-duality transformations, and thus may be called `mirrorfolds'. Starting with arbitrary (compact or non-compact) Gepner models for the K3K3 fiber, we construct modular invariant partition functions of general mirrorfold models. In the case of compact K3K3 fiber the mirrorfolds only yield non-supersymmetric string vacua. They exhibit IR instability due to winding tachyon condensation which is similar to the Scherk-Schwarz type circle compactification. When the fiber SCFT is non-compact (say, the ALE space in the simplest case), on the other hand, both supersymmetric and non-supersymmetric vacua can be constructed. The non-compact non-supersymmetric mirrorfolds can get stabilised at the level of string perturbation theory. We also find that in the non-compact supersymmeric mirrorfolds D-branes are {\em always} non-BPS. These D-branes can get stabilized against both open- and closed-string marginal deformations.Comment: Eqns (2.61) and (3.17) correcte

    Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold

    Full text link
    We study the effects of adding RR, NS and metric fluxes on a T^6/(\Omega (-1)^{F_L} I_3) Type IIA orientifold. By using the effective flux-induced superpotential we obtain Minkowski or AdS vacua with broken or unbroken supersymmetry. In the Minkowski case some combinations of real moduli remain undetermined, whereas all can be stabilized in the AdS solutions. Many flux parameters are available which are unconstrained by RR tadpole cancellation conditions allowing to locate the minima at large volume and small dilaton. We also find that in AdS supersymmetric vacua with metric fluxes, the overall flux contribution to RR tadpoles can vanish or have opposite sign to that of D6-branes, allowing for new model-building possibilities. In particular, we construct the first N=1 supersymmetric intersecting D6-brane models with MSSM-like spectrum and with all closed string moduli stabilized. Some axion-like fields remain undetermined but they are precisely required to give St\"uckelberg masses to (potentially anomalous) U(1) brane fields. We show that the cancellation of the Freed-Witten anomaly guarantees that the axions with flux-induced masses are orthogonal to those giving masses to the U(1)'s. Cancellation of such anomalies also guarantees that the D6-branes in our N=1 supersymmetric AdS vacua are calibrated so that they are forced to preserve one unbroken supersymmetry.Comment: 61 pages, Latex, v2: added references, v3: minor correction

    De Sitter Gravity and Liouville Theory

    Full text link
    We show that the spectrum of conical defects in three-dimensional de Sitter space is in one-to-one correspondence with the spectrum of vertex operators in Liouville conformal field theory. The classical conformal dimensions of vertex operators are equal to the masses of the classical point particles in dS_3 that cause the conical defect. The quantum dimensions instead are shown to coincide with the mass of the Kerr-dS_3 solution computed with the Brown-York stress tensor. Therefore classical de Sitter gravity encodes the quantum properties of Liouville theory. The equality of the gravitational and the Liouville stress tensor provides a further check of this correspondence. The Seiberg bound for vertex operators translates on the bulk side into an upper mass bound for classical point particles. Bulk solutions with cosmological event horizons correspond to microscopic Liouville states, whereas those without horizons correspond to macroscopic (normalizable) states. We also comment on recent criticism by Dyson, Lindesay and Susskind, and point out that the contradictions found by these authors may be resolved if the dual CFT is not able to capture the thermal nature of de Sitter space. Indeed we find that on the CFT side, de Sitter entropy is merely Liouville momentum, and thus has no statistical interpretation in this approach.Comment: 22 pages, LateX2e; added references for section 1 and section 2; corrected typos; improved discussion in section
    corecore