11,955 research outputs found

    Effects of the space environment on the health and safety of space workers

    Get PDF
    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation

    Dual redundant core memory systems

    Get PDF
    Electronic memory system consisting of series redundant drive switch circuits, triple redundant majority voted memory timing functions, and two data registers to provide functional dual redundancy is described. Signal flow through the circuits is illustrated and equence of events which occur within the memory system is explained

    Darwinism and Organizational Ecology: A Reply to Reydon and Scholz

    Get PDF
    In an earlier article published in this journal I challenge Reydon and Scholz's (2009) claim that Organizational Ecology is a non-Darwinian program. In this replay to Reydon and Scholz's subsequent response, I clarify the difference between our two approaches denoted by an emphasis her on the careful application of core Darwinian principles and an insistence by Reydon and Scholz on direct biological analogies. On a substantive issue, they identify as being the principle problem for Organizational Ecology, namely, the inability to identify replicators and interactors "of the right sort" in the business domain; this is also shown to be easily addressed with reference to empirical studies of business populations.Peer reviewedFinal Accepted Versio

    Experiences of early motherhood following successful reproductive procedures

    Get PDF
    Background: The current research aimed to explore how women, who have conceived via assisted reproductive procedures after experiencing infertility, describe their experiences of the first year of motherhood, as well as, what psychosocial and contextual factors impacted on their experiences. Methods: A qualitative methodology was employed, with Reflexive Thematic Analysis (Braun & Clarke, 2006, 2021a, 2021b, 2022) as the chosen method of data analysis. Data was collected by interviewing 12 women who had become parents after successful reproductive procedures. Results: Four key themes were derived from the data analysis process, representing women’s account of how their prior infertility and IVF journeys impacted on their experiences of early motherhood: 1) “It is a big adjustment”: Feeling unprepared for the realities of motherhood; 2) “We’ve got what we wanted”: Navigating early motherhood with a highly sought after and longed for child; 3) “You’ve gone through this physically and mentally draining thing”: Experiencing exhaustion and painful emotions associated with the difficult journey to motherhood; and 4) “That sense of support and sense of community, was really helpful”: The importance of community, connections, normalisation and support. Implications and conclusions: For many women, the psychological impact of infertility and infertility treatment influenced their experiences of early motherhood. To minimise difficult feelings experienced by women post-natally, healthcare professionals should normalise different experiences of early motherhood after infertility, as well as, giving women the chance to reflect on and process the “trauma” of infertility and infertility treatment during and after pregnancy. What is more, protective factors, such as greater partner support and self-compassion, could be increased through policy changes or therapeutic support

    Conformal topological Yang-Mills theory and de Sitter holography

    Full text link
    A new topological conformal field theory in four Euclidean dimensions is constructed from N=4 super Yang-Mills theory by twisting the whole of the conformal group with the whole of the R-symmetry group, resulting in a theory that is conformally invariant and has two conformally invariant BRST operators. A curved space generalisation is found on any Riemannian 4-fold. This formulation has local Weyl invariance and two Weyl-invariant BRST symmetries, with an action and energy-momentum tensor that are BRST-exact. This theory is expected to have a holographic dual in 5-dimensional de Sitter space.Comment: 34 pages, AMSTex, Reference adde

    New Gauged N=8, D=4 Supergravities

    Full text link
    New gaugings of four dimensional N=8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N=2 supersymmetry and in which the gauge group is broken to SU(3)xU(1)2SU(3)xU(1)^2. Previous gaugings used the form of the ungauged action which is invariant under a rigid SL(8,R)SL(8,R) symmetry and promoted a 28-dimensional subgroup (SO(8),SO(p,8p)SO(8),SO(p,8-p) or the non-semi-simple contraction CSO(p,q,8pq)CSO(p,q,8-p-q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU(8)SU^*(8) instead of SL(8,R)SL(8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU(8)SU^*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p,82p)CSO(2p,8-2p) groups, denoted CSO(2p,82p)CSO^*(2p,8-2p), and the new theories have a rigid SU(2) symmetry. The five dimensional gauged N=8 supergravities are dimensionally reduced to D=4. The D=5,SO(p,6p)D=5,SO(p,6-p) gauge theories reduce, after a duality transformation, to the D=4,CSO(p,6p,2)D=4,CSO(p,6-p,2) gauging while the SO(6)SO^*(6) gauge theory reduces to the D=4,CSO(6,2)D=4, CSO^*(6,2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualised to forms with different gauge groups.Comment: 33 pages. Reference adde

    Duality Twists on a Group Manifold

    Get PDF
    We study duality-twisted dimensional reductions on a group manifold G, where the twist is in a group \tilde{G} and examine the conditions for consistency. We find that if the duality twist is introduced through a group element \tilde{g} in \tilde{G}, then the flat \tilde{G}-connection A =\tilde{g}^{-1} d\tilde{g} must have constant components M_n with respect to the basis 1-forms on G, so that the dependence on the internal coordinates cancels out in the lower dimensional theory. This condition can be satisfied if and only if M_n forms a representation of the Lie algebra of G, which then ensures that the lower dimensional gauge algebra closes. We find the form of this gauge algebra and compare it to that arising from flux compactifications on twisted tori. As an example of our construction, we find a new five dimensional gauged, massive supergravity theory by dimensionally reducing the eight dimensional Type II supergravity on a three dimensional unimodular, non-semi-simple, non-abelian group manifold with an SL(3,R) twist.Comment: 22 page

    A Geometry for Non-Geometric String Backgrounds

    Full text link
    A geometric string solution has background fields in overlapping coordinate patches related by diffeomorphisms and gauge transformations, while for a non-geometric background this is generalised to allow transition functions involving duality transformations. Non-geometric string backgrounds arise from T-duals and mirrors of flux compactifications, from reductions with duality twists and from asymmetric orbifolds. Strings in ` T-fold' backgrounds with a local nn-torus fibration and T-duality transition functions in O(n,n;Z)O(n,n;\Z) are formulated in an enlarged space with a T2nT^{2n} fibration which is geometric, with spacetime emerging locally from a choice of a TnT^n submanifold of each T2nT^{2n} fibre, so that it is a subspace or brane embedded in the enlarged space. T-duality acts by changing to a different TnT^n subspace of T2nT^{2n}. For a geometric background, the local choices of TnT^n fit together to give a spacetime which is a TnT^n bundle, while for non-geometric string backgrounds they do not fit together to form a manifold. In such cases spacetime geometry only makes sense locally, and the global structure involves the doubled geometry. For open strings, generalised D-branes wrap a TnT^n subspace of each T2nT^{2n} fibre and the physical D-brane is the part of the part of the physical space lying in the generalised D-brane subspace.Comment: 28 Pages. Minor change
    corecore