171 research outputs found

    The Superfluid State of Atomic Li6 in a Magnetic Trap

    Full text link
    We report on a study of the superfluid state of spin-polarized atomic Li6 confined in a magnetic trap. Density profiles of this degenerate Fermi gas, and the spatial distribution of the BCS order parameter are calculated in the local density approximation. The critical temperature is determined as a function of the number of particles in the trap. Furthermore we consider the mechanical stability of an interacting two-component Fermi gas, both in the case of attractive and repulsive interatomic interactions. For spin-polarized Li6 we also calculate the decay rate of the gas, and show that within the mechanically stable regime of phase space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of the system might signal the presence of the superfluid state.Comment: 16 pages Revtex including 10 figures, submitted to Phys. Rev.

    Superfluidity of spin-polarized 6Li

    Full text link
    We study the prospects for observing superfluidity in a spin-polarized atomic gas of 6^6Li atoms, using state-of-the-art interatomic potentials. We determine the spinodal line and show that a BCS transition to the superfluid state can indeed occur in the (meta)stable region of the phase diagram if the densities are sufficiently low. Moreover, for a total density of 1012 cm−310^{12}~cm^{-3}, which still fulfills this requirement, we find a critical temperature of only 29 nK29~nK. We also discuss the stability of the gas due to exchange and dipolar relaxation and conclude that the prospects for observing superfluidity in a magnetically trapped atomic 6^6Li gas are particularly promising for magnetic bias fields larger than 10 T10~T.Comment: 4 pages of ReVTeX and 2 uuencoded figures. Submitted for publication in Physical Review Letter

    Elastic and inelastic collisions of 6Li in magnetic and optical traps

    Full text link
    We use a full coupled channels method to calculate collisional properties of magnetically or optically trapped ultracold 6Li. The magnetic field dependence of the s-wave scattering lengths of several mixtures of hyperfine states are determined, as are the decay rates due to exchange collisions. In one case, we find Feshbach resonances at B=0.08 T and B=1.98 T. We show that the exact coupled channels calculation is well approximated over the entire range of magnetic fields by a simple analytical calculation.Comment: 4 pages revtex including 4 figures, submitted to PR

    Quantum jumps in hydrogen-like systems

    Get PDF
    In this paper it is shown that the Lyman-α\alpha transition of a single hydrogen-like system driven by a laser exhibits macroscopic dark periods, provided there exists an additional constant electric field. We describe the photon-counting process under the condition that the polarization of the laser coincides with the direction of the constant electric field. The theoretical results are given for the example of 4He+^4{He}^+. We show that the emission behavior depends sensitively on the Lamb shift (W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947)) between the 2s1/22s_{1/2} and 2p1/22p_{1/2} energy levels. A possibly realizable measurement of the mean duration of the dark periods should give quantitative information about the above energy difference by using the proposed photon-counting process.Comment: 7 pages RevTeX + 2 figures Phys. Rev A accepte

    Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    Full text link
    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be formed in mixtures of different fermionic atoms. It is found how an increase in the mass ratio for the constituent atoms changes the physics of collisional stability of such molecules compared to the case of homonuclear ones. We discuss Bose-Einstein condensation of these composite bosons and draw prospects for future studies.Comment: 10 pages, 5 figure

    Exploring a quantum degenerate gas of fermionic atoms

    Full text link
    We predict novel phenomena in the behavior of an ultra- cold, trapped gas of fermionic atoms. We find that quantum statistics radically changes the collisional properties, spatial profile, and off-resonant light scattering properties of the atomic fermion system, and we suggest how these effects can be observed.Comment: 5 pages, 3 figure

    Ground states and dynamics of population-imbalanced Fermi condensates in one dimension

    Full text link
    By using the numerically exact density-matrix renormalization group (DMRG) approach, we investigate the ground states of harmonically trapped one-dimensional (1D) fermions with population imbalance and find that the Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with nonzero center-of-mass momentum, is realized for a wide range of parameters. The phase diagram comprising the two phases of i) an LO state at the trap center and a balanced condensate at the periphery and ii) an LO state at the trap center and a pure majority component at the periphery, is obtained. The reduced two-body density matrix indicates that most of the minority atoms contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we also investigate the real-time dynamics of a system of 1D fermions in response to a spin-flip excitation.Comment: 20 pages, 15 figures, accepted for publication in New Journal of Physic

    Dressed States Approach to Quantum Systems

    Full text link
    Using the non-perturbative method of {\it dressed} states previously introduced in JPhysA, we study effects of the environment on a quantum mechanical system, in the case the environment is modeled by an ensemble of non interacting harmonic oscillators. This method allows to separate the whole system into the {\it dressed} mechanical system and the {\it dressed} environment, in terms of which an exact, non-perturbative approach is possible. When applied to the Brownian motion, we give explicit non-perturbative formulas for the classical path of the particle in the weak and strong coupling regimes. When applied to study atomic behaviours in cavities, the method accounts very precisely for experimentally observed inhibition of atomic decay in small cavities PhysLA, physics0111042

    Ultra-cold Polarized Fermi Gases

    Get PDF
    Recent experiments with ultra-cold atoms have demonstrated the possibility of realizing experimentally fermionic superfluids with imbalanced spin populations. We discuss how these developments have shed a new light on a half- century old open problem in condensed matter physics, and raised new interrogations of their own.Comment: 27 pages; 8 figures; Published in Report in Rep. Prog. Phys. 73 112401 (2010

    A stage-structured model to predict the effect of temperature and salinity on glass eel Anguilla anguilla pigmentation development

    Get PDF
    The pigmentation development process of glass eels Anguilla anguilla from stage V-B to VIA3 was modelled by gamma cumulative functions. These functions varied with respect to the factors temperature and salinity whose effects were adjusted by beta functions. Temperature was shown to accelerate pigmentation, while salinity acted as a secondary factor slowing down the pigmentation. The model fits the development of 15 samples kept at various temperatures and salinities in the Vilaine River, as well as samples monitored at other dates and places in Europe. It allows the prediction of the duration of estuarine residency for glass eels, in winter and spring, in the Atlantic estuaries
    • 

    corecore