63 research outputs found

    Antarctica

    Get PDF

    Grounding-line basal melt rates determined using radar-derived internal stratigraphy

    Get PDF
    We use ice-penetrating radar data across grounding lines of Siple Dome and Roosevelt Island, Antarctica, to measure the spatial pattern, magnitude and duration of sub-ice-shelf melting at these locations. Stratigraphic layers across the grounding line show, in places, a large-amplitude downwarp at, or slightly downstream of, the grounding line due to sub-ice-shelf basal melting. Localized downwarping indicates that melting is transient; melt rates, or the grounding line position, have changed within a few hundred years in order to produce the observed stratigraphy. Elsewhere, no meltrelated stratigraphic signature is preserved. In part, heterogeneity in the amount of sub-ice-shelf melt is due to regional circulation patterns in the sub-shelf cavity, but local (on the order of tens of kilometers) heterogeneity in the melt pattern may reflect small differences in the shape of the ice-shelf base at the grounding line. We find that all of the grounding lines crossed have been in place for at most ~400 years

    The Link Between Climate Warming and Break-Up of Ice Shelves in the Antarctic Peninsula

    Get PDF
    A review of in situ and remote-sensing data covering the ice shelves of the Antarctic Peninsula provides a series of characteristics closely associated with rapid shelf retreat: deeply embayed ice fronts; calving of myriad small elongate bergs in punctuated events; increasing flow speed; and the presence of melt ponds on the ice-shelf surface in the vicinity of the break-ups. As climate has warmed in the Antarctic Peninsula region, melt-season duration and the extent of ponding have increased. Most break-up events have occurred during longer melt seasons, suggesting that meltwater itself, not just warming, is responsible. Regions that show melting without pond formation are relatively unchanged. Melt ponds thus appear to be a robust harbinger of ice-shelf retreat. We use these observations to guide a model of ice-shelf flow and the effects of meltwater. Crevasses present in a region of surface ponding will likely fill to the brim with water. We hypothesize (building on Weertman (1973), Hughes (1983) and Van der Veen (1998)) that crevasse propagation by meltwater is the main mechanism by which ice shelves weaken and retreat. A thermodynamic finite-element model is used to evaluate ice flow and the strain field, and simple extensions of this model are used to investigate crack propagation by meltwater. The model results support the hypothesis

    Post-Stagnation Behavior in the Upstream Regions of Ice Stream C, West Antarctica

    Get PDF
    The region where two active tributaries feed into the now stagnant Ice Stream C (ISC), West Antarctica, is thickening. In this region, we observe a correlation between faster ice flow (the tributaries) and elevated topography. We conclude that stagnation of ISC resulted in compression and thickening along the tributaries, eventually forming a bulge on the ice-sheet surface. Modern hydraulic potential gradients would divert basal meltwater from ISC to Ice Stream B (ISB). These gradients are primarily controlled by the bulge topography, and so likely formed subsequent to trunk stagnation. As such, we argue against water piracy as being the cause for ISC\u27s stagnation. Kinematic-wave theory suggests that thickness perturbations propagate downstream over time, but that kinematic-wave speed decreases near the stagnant trunk. This and modest diffusion rates combine to trap most of the tributary-fed ice in the bulge region. Using interferometric synthetic aperture radar velocity measurements, we observe that half of the ice within ISC\u27s southern tributary flows into ISB. That flow pattern and other observations of non-steady flow in the region likely result from stagnation-induced thickening along upper ISC combined with a longer period of thinning on upper ISB. If current trends in thickness change continue, more ice from upper ISC will be diverted to ISB

    Multidecadal Basal Melt Rates and Structure of the Ross Ice Shelf, Antarctica, Using Airborne Ice Penetrating Radar

    Get PDF
    Basal melting of ice shelves is a major source of mass loss from the Antarctic Ice Sheet. In situ measurements of ice shelf basal melt rates are sparse, while the more extensive estimates from satellite altimetry require precise information about firn density and characteristics of near‐surface layers. We describe a novel method for estimating multidecadal basal melt rates using airborne ice penetrating radar data acquired during a 3‐year survey of the Ross Ice Shelf. These data revealed an ice column with distinct upper and lower units whose thicknesses change as ice flows from the grounding line toward the ice front. We interpret the lower unit as continental meteoric ice that has flowed across the grounding line and the upper unit as ice formed from snowfall onto the relatively flat ice shelf. We used the ice thickness difference and strain‐induced thickness change of the lower unit between the survey lines, combined with ice velocities, to derive basal melt rates averaged over one to six decades. Our results are similar to satellite laser altimetry estimates for the period 2003–2009, suggesting that the Ross Ice Shelf melt rates have been fairly stable for several decades. We identify five sites of elevated basal melt rates, in the range 0.5–2 m a⁻¹, near the ice shelf front. These hot spots indicate pathways into the sub‐ice‐shelf ocean cavity for warm seawater, likely a combination of summer‐warmed Antarctic Surface Water and modified Circumpolar Deep Water, and are potential areas of ice shelf weakening if the ocean warms

    Tidal Modulation of a Lateral Shear Margin: Priestley Glacier, Antarctica

    Get PDF
    We use high resolution, ground-based observations of ice displacement to investigate ice deformation across the floating left-lateral shear margin of Priestley Glacier, Terra Nova Bay, Antarctica. Bare ice conditions allow us to fix survey marks directly to the glacier surface. A combination of continuous positioning of a local reference mark, and repeat positioning of a network of 33 stakes installed across a 2 km width of the shear margin are used to quantify shear strain rates and the ice response to tidal forcing over an 18-day period. Along-flow velocity observed at a continuous Global Navigation Satellite Systems (GNSS) station within the network varies by up to ∼30% of the mean speed (±28 m a−1) over diurnal tidal cycles, with faster flow during the falling tide and slower flow during the rising tide. Long-term deformation in the margin approximates simple shear with a small component of flow-parallel shortening. At shorter timescales, precise optical techniques allow high-resolution observations of across-flow bending in response to the ocean tide, including across-flow strains on the order of 10–5. An elastodynamic model informed by the field observations is used to simulate the across-flow motion and deformation. Flexure is concentrated in the shear margin, such that a non-homogeneous elastic modulus is implied to best account for the combined observations. The combined pattern of ice displacement and ice strain also depends on the extent of coupling between the ice and valley sidewall. These conclusions suggest that investigations of elastic properties made using vertical ice motion, but neglecting horizontal displacement and surface strain, will lead to incorrect conclusions about the elastic properties of ice and potentially over-simplified assumptions about the sidewall boundary condition

    Ultrasonic and seismic constraints on crystallographic preferred orientations of the Priestley Glacier shear margin, Antarctica

    Get PDF
    Crystallographic preferred orientations (CPOs) are particularly important in controlling the mechanical properties of glacial shear margins. Logistical and safety considerations often make direct sampling of shear margins difficult, and geophysical measurements are commonly used to constrain the CPOs. We present here the first direct comparison of seismic and ultrasonic data with measured CPOs in a polar shear margin. The measured CPO from ice samples from a 58 m deep borehole in the left lateral shear margin of the Priestley Glacier, Antarctica, is dominated by horizontal c axes aligned sub-perpendicularly to flow. A vertical-seismic-profile experiment with hammer shots up to 50 m away from the borehole, in four different azimuthal directions, shows velocity anisotropy of both P waves and S waves. Matching P-wave data to the anisotropy corresponding to CPO models defined by horizontally aligned c axes gives two possible solutions for the c-axis azimuth, one of which matches the c-axis measurements. If both P-wave and S-wave data are used, there is one best fit for the azimuth and intensity of c-axis alignment that matches the measurements well. Azimuthal P-wave and S-wave ultrasonic data recorded in the laboratory on the ice core show clear anisotropy of P-wave and S-wave velocities in the horizontal plane that match that predicted from the CPO of the samples. With quality data, azimuthal increments of 30∘ or less will constrain well the orientation and intensity of c-axis alignment. Our experiments provide a good framework for planning seismic surveys aimed at constraining the anisotropy of shear margins

    Microstructure and crystallographic preferred orientations of an azimuthally oriented ice core from a lateral shear margin: Priestley Glacier, Antarctica

    Get PDF
    A 58 m long azimuthally oriented ice core has been collected from the floating lateral sinistral shear margin of the lower Priestley Glacier, Terra Nova Bay, Antarctica. The crystallographic preferred orientations (CPO) and microstructures are described in order to correlate the geometry of anisotropy with constrained large-scale kinematics. Cryogenic Electron Backscatter Diffraction analysis shows a very strong fabric (c-axis primary eigenvalue ∼0.9) with c-axes aligned horizontally sub-perpendicular to flow, rotating nearly 40° clockwise (looking down) to the pole to shear throughout the core. The c-axis maximum is sub-perpendicular to vertical layers, with the pole to layering always clockwise of the c-axes. Priestley ice microstructures are defined by largely sub-polygonal grains and constant mean grain sizes with depth. Grain long axis shape preferred orientations (SPO) are almost always 1–20° clockwise of the c-axis maximum. A minor proportion of “oddly” oriented grains that are distinct from the main c-axis maximum, are present in some samples. These have horizontal c-axes rotated clockwise from the primary c-axis maximum and may define a weaker secondary maximum up to 30° clockwise of the primary maximum. Intragranular misorientations are measured along the core, and although the statistics are weak, this could suggest recrystallization by subgrain rotation to occur. These microstructures suggest subgrain rotation (SGR) and recrystallization by grain boundary migration recrystallization (GBM) are active in the Priestley Glacier shear margin. Vorticity analysis based on intragranular distortion indicates a vertical axis of rotation in the shear margin. The variability in c-axis maximum orientation with depth indicates the structural heterogeneity of the Priestley Glacier shear margin occurs at the meter to tens of meters scale. We suggest that CPO rotations could relate to rigid rotation of blocks of ice within the glacial shear margin. Rotation either post-dates CPO and SPO development or is occurring faster than CPO evolution can respond to a change in kinematics
    corecore