149 research outputs found

    Weak Measurement of Qubit Oscillations with Strong Response Detectors: Violation of the Fundamental Bound Imposed on Linear Detectors

    Full text link
    We investigate the continuous weak measurement of a solid-state qubit by single electron transistors in nonlinear response regime. It is found that the signal-to-noise ratio can violate the universal upper bound imposed quantum mechanically to any linear response detectors. We understand the violation by means of the cross-correlation of the detector currents.Comment: 4 pages, 4 figure

    Efficient spin-current injection in single-molecule magnet junctions

    Full text link
    We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.Comment: 4 figure

    Materials design and modification on amide-based composites for hydrogen storage

    Get PDF
    AbstractAmide-based composite system has the potential to meet the needs of onboard hydrogen storage for fuel cell vehicles due to its relatively high hydrogen capacity and tunable thermodynamics. A large number of amide–hydride and amide–complex hydride composites have been developed in the past decades. This article reviews the state-of-the-arts of amide–hydride composite systems with the focus on the materials design and modification
    • …
    corecore