3 research outputs found

    Preparation of Bentonite/Chitosan Composite for Bleaching of Deteriorating Transformer Oil

    No full text
    A novel adsorbent containing chitosan (CS) and bentonite (BT) was developed by mixing, drying, and calcining, and used as an adsorbent for the efficient bleaching of deteriorating transformer oil. The effects of calcination temperature, dosage of CS, adsorbent content, adsorption temperature, and adsorption time on the bleaching capacity of transformer oil were investigated. The structure of the adsorbent was also investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and N2 adsorption-desorption isotherm techniques. The results showed that there was only physical interaction between CS and BT; CS did transform to carbon (C) and covered the surface of BT. The specific surface area and micropore volume of the adsorbent were affected by the calcination process. The composite adsorbent offered an excellent bleaching performance. When the calcination temperature was 300 °C and dosage of CS was 5%, the composite adsorbent had the optimum bleaching properties. When the composite adsorbent content was 4%, the adsorption temperature was 50 °C and the adsorption time was 75 min, the colour number and transmittance of the deteriorating transformer oil decreased from no. 10 to no. 1 and increased from 70.1% to 99.5%, respectively

    Influence of Nano Titanium Dioxide and Clove Oil on Chitosan–Starch Film Characteristics

    No full text
    The combined effects of nano titanium dioxide (TiO2-N) and clove oil (CO) on the physico-chemical, biological and structural properties of chitosan (CH)/starch (ST) films were investigated by using a solvent casting method. Results indicated that the incorporation of TiO2-N could improve the compactness of the film, increase the tensile strength (TS) and antioxidant activity, and decrease the water vapour permeability (WVP). As may be expected, the incorporation of CO into the film matrix decreased TS but increased the hydrophobicity as well as water vapour barrier antimicrobial and antioxidant properties. Fourier-transform infrared spectroscopy (FTIR) data supported intermolecular interactions between TiO2-N, CO and the film matrix. Use of a scanning electron microscope (SEM) showed that TiO2-N and CO were well dispersed and emulsified in the film network. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves demonstrated that TiO2-N and CO were well embedded in the film matrix, hence this blend film system could provide new formulation options for food packaging materials in the future
    corecore