26 research outputs found

    Disruption of Smad7 Promotes ANG II-Mediated Renal Inflammation and Fibrosis via Sp1-TGF-β/Smad3-NF.κB-Dependent Mechanisms in Mice

    Get PDF
    Smad7 is an inhibitory Smad and plays a protective role in obstructive and diabetic kidney disease. However, the role and mechanisms of Smad7 in hypertensive nephropathy remains unexplored. Thus, the aim of this study was to investigate the role and regulatory mechanisms of Smad7 in ANG II-induced hypertensive nephropathy. Smad7 gene knockout (KO) and wild-type (WT) mice received a subcutaneous infusion of ANG II or control saline for 4 weeks via osmotic mini-pumps. ANG II infusion produced equivalent hypertension in Smad7 KO and WT mice; however, Smad7 KO mice exhibited more severe renal functional injury as shown by increased proteinuria and reduced renal function (both p<0.05) when compared with Smad7 WT mice. Enhanced renal injury in Smad7 KO mice was associated with more progressive renal fibrosis with elevated TGF-β/Smad3 signalling. Smad7 KO mice also showed more profound renal inflammation including increased macrophage infiltration, enhanced IL-1β and TNF-α expression, and a marked activation of NF-κB signaling (all p<0.01). Further studies revealed that enhanced ANG II-mediated renal inflammation and fibrosis in Smad7 KO mice were also associated with up-regulation of Sp1 but downregulation of miR-29b expression. Taken together, the present study revealed that enhanced Sp1-TGF-β1/Smad3-NF-κB signaling and loss of miR-29 may be mechanisms by which deletion of Smad7 promotes ANG II-mediated renal fibrosis and inflammation. Thus, Smad7 may play a protective role in ANG II-induced hypertensive kidney disease. © 2013 Liu et al.published_or_final_versio

    Deficiency of Smad7 Enhances Cardiac Remodeling Induced by Angiotensin II Infusion in a Mouse Model of Hypertension

    Get PDF
    Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II)-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO) and wild-type (WT) mice by subcutaneous infusion of Ang II (1.46 mg/kg/day) for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV) mass (P<0.01),reduction of LV ejection fraction(P<0.001) and fractional shortening(P<0.001). Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3+ T cells and F4/80+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network. © 2013 Wei et al.published_or_final_versio

    Loss of angiotensin-converting enzyme 2 enhances TGF-Β/Smad-mediated renal fibrosis and NF-κB-driven renal inflammation in a mouse model of obstructive nephropathy

    No full text
    It is known that angiotensin (Ang)-converting enzyme (ACE) 2 catalyzes Ang II to Ang 1-7 to prevent the detrimental effect of Ang II on blood pressure, renal fibrosis, and inflammation. However, mechanisms of renoprotective role of Ace2 remain largely unclear. The present study tested the hypothesis that deficiency of Ace2 may accelerate intrarenal Ang II-mediated fibrosis and inflammation independent of blood pressure in a model of unilateral ureteral obstructive (UUO) nephropathy induced in Ace2 +y and Ace2 -/y mice. Results showed that both Ace2 +y and Ace2 -/y mice had normal levels of blood pressure and plasma Ang II/Ang 1-7. In contrast, deletion of ACE2 resulted in a fourfold increase in the ratio of intrarenal Ang II/Ang 1-7 in the UUO nephropathy. These changes were associated with the development of more intensive tubulointerstitial fibrosis (α-SMA, collagen I) and inflammation (TNF-α, IL-1β, MCP-1, F4/80 + cells, and CD3 +T cells) in Ace2 -/y mice at day 3 (all P≤0.05) after UUO, becoming more profound at day 7 (all P≤0.01). Enhanced renal fibrosis and inflammation in the UUO kidney of Ace2 -/y mice were largely attributed to a marked increase in the intrarenal Ang II signaling (AT1-ERK1/2 mitogen-activated protein kinase), TGF-β/Smad2/3, and NF-κB signaling pathways. Further studies revealed that enhanced TGF-β/Smad and NF-κB signaling in the UUO kidney of Ace2 -/y mice was associated with upregulation of an E3 ligase Smurf2 and a loss of renal Smad7. In conclusion, enhanced Ang II-mediated TGF-β/Smad and NF-B signaling may be the mechanisms by which loss of Ace2 enhances renal fibrosis and inflammation. Smad7 ubiquitin degradation mediated by Smurf2 may be a central mechanism by which Ace2 -/y mice promote TGF-Β/Smad2/3-mediated renal fibrosis and NF-κB-driven renal inflammation in a mouse model of UUO nephropathy. © 2012 USCAP, Inc All rights reserved.link_to_OA_fulltex

    Smad3-mediated upregulation of miR-21 promotes renal fibrosis

    No full text
    TGF-β/Smad signaling plays a role in fibrogenesis, but therapies targeting TGF-β are ineffective in treating renal fibrosis. Here, we explored the therapeutic potential of targeting TGF-β-induced microRNA in the progression of renal fibrosis. Microarray analysis and real-time PCR revealed upregulation of miR-21 in tubular epithelial cells (TECs) in response to TGF-β. Lack of Smad3, but not lack of Smad2, prevented cells from upregulating miR-21 in response to TGF-β. In addition, Smad3-deficient mice were protected from upregulation of miR-21 and fibrosis in the unilateral ureteral obstruction model. In contrast, conditional knockout of Smad2 enhanced miR-21 expression and renal fibrosis. Furthermore, ultrasound-microbubble- mediated gene transfer of a miR-21-knockdown plasmid halted the progression of renal fibrosis in established obstructive nephropathy. In conclusion, these data demonstrate that Smad3, but not Smad2, signaling increases expression of miR-21, which promotes renal fibrosis. Inhibition of miR-21 may be a therapeutic approach to suppress renal fibrosis. Copyright © 2011 by the American Society of Nephrology.link_to_subscribed_fulltex

    MicroRNA-29b inhibits diabetic nephropathy in db/db mice

    No full text
    Inflammation and its consequent fibrosis are two main features of diabetic nephropathy (DN), but target therapy on these processes for DN remains yet ineffective. We report here that miR-29b is a novel therapeutic agent capable of inhibiting progressive renal inflammation and fibrosis in type 2 diabetes in db/db mice. Under diabetic conditions, miR-29b was largely downregulated in response to advanced glycation end (AGE) product, which was associated with upregulation of collagen matrix in mesangial cells via the transforming growth factor-β (TGF-β)/Smad3-dependent mechanism. These pathological changes were reversed by overexpressing miR-29b, but enhanced by knocking-down miR-29b. Similarly, loss of renal miR-29b was associated with progressive diabetic kidney injury, including microalbuminuria, renal fibrosis, and inflammation. Restored renal miR-29b by the ultrasound-based gene therapy was capable of attenuating diabetic kidney disease. Further studies revealed that inhibition of Sp1 expression, TGF-β/Smad3-dependent renal fibrosis, NF-κB-driven renal inflammation, and T-bet/Th1-mediated immune response may be mechanisms associated with miR-29b treatment in db/db mice. In conclusion, miR-29b may play a protective role in diabetic kidney disease and may have therapeutic potential for diabetic kidney complication. © The American Society of Gene & Cell Therapy.link_to_subscribed_fulltex

    Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling

    No full text
    AimsSmad7 plays a negative regulatory role in many inflammatory diseases, but its effect on hypertensive disease remains unknown. The present study tested the hypothesis that overexpression of Smad7 may have therapeutic potential for angiotensin II (Ang II)-mediated hypertensive cardiac remodelling.Methods and resultsHypertensive heart disease was induced in mice by subcutaneous infusion of Ang II for 28 days and treated with Smad7 by a non-invasive ultrasound-microbubble-mediated inducible Smad7 gene transfer. We found that cardiac Smad7 was largely reduced in the hypertensive heart and overexpression of cardiac Smad7 protected against the fall in the left ventricular (LV) ejection fraction (EF), an increase in LV mass, and cardiac inflammation and fibrosis such as up-regulation of pro-inflammatory cytokines (IL-1β, TNF-α) and fibrotic markers (collagen I, α-SMA), and infiltration of CD3+ T cells and F4/80+ macrophages. Further studies revealed that inactivation of the Sp1-TGF-β/Smad3-NF-κB (NF-κB, nuclear factor κB) pathways and prevention of cardiac miR-29 loss were mechanisms by which overexpression of Smad7 inhibited Ang II-mediated cardiac remodelling. Importantly, we also found that treatment with Smad7 when hypertensive cardiopathy established at day 14 halted the progression of cardiac injury by blunting the fall of EF and an increase in LV mass, and blocking TGF-β/Smad3-mediated cardiac fibrosis and NF-κB-driven inflammation.ConclusionSmad7 plays a protective role in Ang II-induced cardiac remodelling via mechanisms involving the Sp1-TGF-β/Smad-NF-κB-miR-29 regulatory network. Thus, Smad7 may be a novel therapeutic agent for hypertensive cardiovascular diseases. © 2013 The Author.link_to_subscribed_fulltex

    CS12192, a Novel JAK3/JAK1/TBK1 Inhibitor, Synergistically Enhances the Anti-Inflammation Effect of Methotrexate in a Rat Model of Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is a common disease worldwide and is treated commonly with methotrexate (MTX). CS12192 is a novel JAK3 inhibitor discovered by Chipscreen Biosciences for the treatment of autoimmune diseases. In the present study, we examined the therapeutic effect of CS12192 against RA and explored if the combinational therapy of CS12192 and MTX produced a synergistic effect against RA in rat collagen-induced arthritis (CIA). Arthritis was induced in male Sprague-Dawley rats by two intradermal injections of bovine type II collagen (CII) and treated with MTX, CS12192, or the combination of CS12192 and MTX daily for two weeks. Effects of different treatments on arthritis score, X-ray score, pathology, and expression of inflammatory cytokines and biomarkers were examined. We found that treatment with either CS12192 or MTX produced a comparable therapeutic effect on CIA including: (1) significantly lowering the arthritis score, X-ray score, serum levels of rheumatic factor (RF), C-reactive protein (CRP), and anti-nuclear antibodies (ANA); (2) largely alleviating histopathological damage, reducing infiltration of Th17 cells while promoting Treg cells; (3) inhibiting the expression of inflammatory cytokines and chemokines such as IL-1β, TNF-α, IL-6, CCL2, and CXCL1. All these inhibitory effects were further improved by the combinational therapy with MTX and CS12192. Of importance, the combinational treatment also resulted in a marked switching of the Th17 to Treg and the M1 to M2 immune responses in synovial tissues of CIA. Thus, when compared to the monotherapy, the combination treatment with CS12192 and MTX produces a better therapeutic effect against CIA with a greater suppressive effect on T cells and macrophage-mediated joint inflammation
    corecore