15 research outputs found

    Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study

    Get PDF
    Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia

    Concurrent Glycogen and Lactate Imaging with FTIR Spectroscopy To Spatially Localize Metabolic Parameters of the Glial Response Following Brain Ischemia

    No full text
    Imaging energy metabolites as markers of the energy shuttle between glia and neurons following ischemia is an ongoing challenge. Traditional microscopies in combination with histochemistry reveal glycogen accumulation within glia following ischemia, indicating an altered metabolic profile. Although semiquantitative histochemical glycogen analysis is possible, the method suffers from typical confounding factors common to histochemistry, such as variation in reagent penetration and binding. In addition, histochemical detection of glycogen does not reveal information on the metabolic fate of glycogen (i.e., lactate production). Therefore, validation of a direct semiquantitative method to simultaneously image both brain glycogen and lactate in the same tissue section would benefit this research field. In this study, we demonstrate the first application of Fourier transform infrared (FTIR) spectroscopy for simultaneous direct spectroscopic imaging of brain glycogen and lactate, in situ within ex vivo tissue sections. Serial tissue sections were analyzed with anti-glial fibrillary acidic protein (GFAP) immunohistochemistry to provide a comparison between the glycogen and lactate distribution revealed by FTIR and the glial distribution revealed by GFAP immunohistochemistry. The distribution of glycogen revealed by FTIR spectroscopic imaging has been further compared with histochemical detection of glycogen on the adjacent tissue sections. This approach was then applied to study spatiotemporal disturbances in metabolism, relative to glia and neuronal populations, following cerebral ischemia in a murine model of stroke
    corecore