27 research outputs found

    Reproductive Capacities and Development of a Seed Bruchid Beetle, Acanthoscelides macrophthalmus, a Potential Host for the Mass Rearing of the Parasitoid, Dinarmus basalis

    Get PDF
    The reproductive capacities and development of the seed beetle Acanthoscelides macrophthalmus (Schaeffer) (Coleoptera: Bruchidae), found in Togo, were determined under natural conditions in a Guinean zone for its use as a substitute host for the mass rearing of the parasitoid Dinarmus basalts Rond (Hymenoptera: Pteromalidae), a biological agent for the control of beetles that are pests of cowpea, Vigna unguiculata (L.) Walpers (Fabales: Fabaceae). Population dynamics at the field level; and survival, fecundity and offspring production by A. macrophthalmus under laboratory conditions were measured when fed on its natural plant-host Leucaena leucocephala (Lamark) deWit (Fabales: Mimosaceae). The data resulting from the laboratory study were used to calculate the demographic parameters of A. macrophthalmus by establishing its fertility and life tables. Contrary to cultivated leguminous food plants, L. leucocephala is a perennial sub-spontaneous leguminous plant whose pods are available year round. Although A. macrophthalmus was present in nature throughout the year, its infestation rate of the pods fluctuated according to the phenology of the plant. The maximum infestation of L. leucocephala pods was observed between August and December. Four larval stages and one pupal stage of A. macrophthalmus were identified in the laboratory. The total mean development time varied on average 33.75 ± 2.87 days on the mature pods and 33.39 ± 2.02 days on seeds. The adult female lived from one to two weeks. During its life time, the female laid an average of 62.3 ± 19 and 43.1 ± 13 eggs on the mature pods and seeds respectively and produced an average of 36.7 ± 11.3 offspring on the mature pods and 21.8 ± 8.4 offspring on seeds. On seeds, the net reproduction rate was 5.88 females per female and the intrinsic rate of population increase 0.051 per day. The generation time was 34.59 days and the doubling time 13.59 days. The demographic parameters of A. macrophthalmus in this study are close to those of Callobruchus maculatus F. (Bruchidae), the natural host of D. basalts in a previous study. A. macrophthalmus could therefore be used as substitute host for the mass rearing of D. basalts and subsequently its release in farmers' storage containers. The data presented in this study provide some baseline information regarding the reproductive capacities of A. macrophthalmus that may be useful for its promotion as a substitute host for mass rearing of D. basalts

    Formation, growth and dissociation of He bubbles in Al2O3

    Get PDF
    The formation and dissociation of helium bubbles and helium desorption are investigated in sapphire Al2O3(0001) implanted with 30 keV He ions to four different doses of 0.1, 0.3, 1.0 and 2.0 x 10(16) ions cm(-2). The samples were annealed isochronally up to 1850 K in steps of 100 K. The techniques of Doppler broadening positron beam analysis (PBA) and neutron depth profiling (NDP) were used to investigate defect evolution and helium retention, respectively, during the annealing procedure. It was observed that the maximum bubble volume is found after 1250 K annealing, after which a process of bubble shrinkage sets in. Cross-sectional transmission electron microscopy (XTEM) was performed on the sample that was implanted with the highest-dose (2.0 x 10(16) He ions cm(-2)) after annealing at 1250 K. It was found that the bubbles are shaped as discs lying parallel with the surface and that the average bubble size is 5.5 nm. In all samples, helium is released mainly at a temperature of 1750 K. The desorption curves were analyzed by means of a permeation model. The activation energy for permeation was found as 4.0 eV. (C) 2003 Elsevier B.V. All rights reserved.</p

    Lithium ion implantation effects in MgO (100)

    No full text
    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening Positron Beam Analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted (6)Li atoms was monitored with Neutron Depth Profiling (NDP). It was observed that detrapping and diffusion of (6)Li starts at an annealing temperature of 1200K.</p

    Lithium ion implantation effects in MgO (100)

    No full text
    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening Positron Beam Analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted (6)Li atoms was monitored with Neutron Depth Profiling (NDP). It was observed that detrapping and diffusion of (6)Li starts at an annealing temperature of 1200K

    Microfinance Services and Women’s Empowerment

    No full text
    Empowering women and increasing gender equity is assumed to be crucial in achieving economic growth and improving well-being around the world. Offering women access to microfinance services is one prominent approach to improve the position of women in society and to help them move out of poverty. This chapter provides a short introduction to microfinance services in general and introduces the theoretical explanations how financial and nonfinancial microfinance services may empower women. Furthermore, the chapter summarizes relevant research on the impact of the provision of these services on women’s empowerment. Different insights are presented to illustrate how gendered power between female loan borrowers and their husbands may be influenced by the impact of microfinance services. The chapter concludes with a critical ethical and empirical discussion on the contribution of offering microfinance services to women to empower them and suggest new avenues for future research
    corecore