6 research outputs found

    Contact investigations for antibiotic-resistant bacteria:a mixed-methods study of patients' comprehension of and compliance with self-sampling requests post-discharge

    Get PDF
    BACKGROUND: Contact investigation is an important tool to identify unrecognized patients who are colonized with antibiotic-resistant bacteria. Many Dutch hospitals include already discharged contact patients by sending them a self-sampling request at home, incl. an information letter and sampling materials. Each hospital composes these information letters on their own initiative, however, whether discharged patients comprehend and comply with these requests remains unclear. Therefore, the aim was to provide insight into patients' comprehension of and self-reported compliance with self-sampling requests post-discharge. METHODS: This mixed-methods study was performed in eight Dutch hospitals. First, the Common European Framework of Reference (CEFR) language level of self-sampling request letters was established. Second, a questionnaire about patients' comprehension of the letter, self-reported compliance, and reasons for compliance or non-compliance were sent to patients that received such a request in 2018/2019. Finally, a random selection of questionnaire respondents was interviewed between January and March 2020 to gain additional insights. RESULTS: CEFR levels of 15 letters were established. Four letters were assigned level B1, four letters B1-B2, and seven letters B2. The majority of patients reported good comprehension of the letter they had received. Conversely, some respondents indicated that information about the bacterium (18.4%), the way in which results would be communicated (18.1%), and the self-sampling instructions (9.7%) were (partially) unclear. Furthermore, self-reported compliance was high (88.8%). Reasons to comply were personal health (84.3%), the health of others (71.9%), and general patient safety (96.1%). Compliant patients appeared to have a need for confirmation, wanted to protect family and/or friends, and felt they were providing the hospital the ability to control the transmission of antibiotic-resistant bacteria. Although a limited number of non-compliant patients responded to the questionnaire, it seemed that more patients did not comply with self-sampling requests when they received a letter in a higher CEFR-level (B2) compared to a lower CEFR-level (&lt; B2) (9.8% vs. 2.5%, P = 0.049). CONCLUSIONS: This study showed an overall good comprehension of and high self-reported compliance with self-sampling requests post-discharge. Providing balanced information in self-sampling request letters has the potential to reduce patient's ambiguity and concerns, and can cause increased compliance with self-sampling requests.</p

    Evaluation of yield of currently available diagnostics by sample type to optimize detection of respiratory pathogens in patients with a community-acquired pneumonia

    No full text
    Background: For the detection of respiratory pathogens, the sampling strategy may influence the diagnostic yield. Ideally, samples from the lower respiratory tract are collected, but they are difficult to obtain. Objectives: In this study, we compared the diagnostic yield in sputum and oropharyngeal samples (OPS) for the detection of respiratory pathogens in patients with community-acquired pneumonia (CAP), with the objective to optimize our diagnostic testing algorithm. Methods: Matched sputum samples, OPS, blood cultures, serum, and urine samples were taken from patients (>18 years) with CAP and tested for the presence of possible respiratory pathogens using bacterial cultures, PCR for 17 viruses and five bacteria and urinary antigen testing. Results: When using only conventional methods, that is, blood cultures, sputum culture, urinary antigen tests, a pathogen was detected in 49·6% of patients (n = 57). Adding molecular detection assays increased the yield to 80%. A pathogen was detected in 77 of the 115 patients in OPS or sputum samples by PCR. The sensitivity of the OPS was lower than that of the sputum samples (57% versus 74%). In particular, bacterial pathogens were more often detected in sputum samples. The sensitivity of OPS for the detection of most viruses was higher than in sputum samples (72% versus 66%), except for human rhinovirus and respiratory syncytial virus. Conclusion: Addition of PCR on both OPS and sputum samples significantly increased the diagnostic yield. For molecular detection of bacterial pathogens, a sputum sample is imperative, but for detection of most viral pathogens, an OPS is sufficient

    Invasieve groep A-streptokokkeninfecties in Nederland

    No full text
    Group A streptococcal (GAS) infections are caused by the Gram-positive bacterium Streptococcus pyogenes. Infection can occur via droplet infection from the throat and via (in)direct contact with infected people. GAS can cause a wide variety of diseases, ranging from superficial skin infections, pharyngitis and scarlet fever, to serious invasive diseases such as puerperal sepsis, pneumonia, necrotising soft tissue infections (NSTI) (also known as necrotising fasciitis/myositis), meningitis and streptococcal toxic shock syndrome (STSS). In invasive GAS infections, the bacteria has penetrated into a sterile body compartment (such as the bloodstream, deep tissues, or the central nervous system). Invasive GAS infections are rare but serious, with high morbidity and mortality. Since March 2022, the National Institute for Public Health and the Environment (RIVM) reported a national increase in notifiable invasive GAS infections (NSTI, STSS and puerperal fever). Particularly NSTI has increased compared to the years before the SARS-CoV-2 pandemic. Remarkably, the proportion of children aged 0 to 5 years with invasive GAS-infections is higher in 2022 than in the previous years (12% compared to 4%). While seasonal peaks occur, the current elevation exceeds this variation. To promote early recognition and diagnosis of invasive GAS infections different clinical cases are presented
    corecore