3 research outputs found

    Light-Driven Enzymatic Decarboxylation of Fatty Acids

    No full text
    The photoenzymatic decarboxylation of fatty acids to alkanes is proposed as an alternative approach for the synthesis of biodiesel. By using a recently discovered photodecarboxylase from Chlorella variabilis NC64A (CvFAP) we demonstrate the irreversible preparation of alkanes from fatty acids and triglycerides. Several fatty acids and their triglycerides are converted by CvFAP in near-quantitative yield and exclusive selectivity upon illumination with blue light. Very promising turnover numbers of up to 8000 were achieved in this proof-of-concept study.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Biocatalysi

    Photochemical regeneration of flavoenzymes – An Old Yellow Enzyme case-study

    No full text
    Direct, NAD(P)H-independent regeneration of Old Yellow Enzymes represents an interesting approach for simplified reaction schemes for the stereoselective reduction of conjugated C=C-double bonds. Simply by illuminating the reaction mixtures with blue light in the presence of sacrificial electron donors enables to circumvent the costly and unstable nicotinamide cofactors and a corresponding regeneration system. In the present study, we characterise the parameters determining the efficiency of this approach and outline the current limitations. Particularly, the photolability of the flavin photocatalyst and the (flavin-containing) biocatalyst represent the major limitation en route to preparative application.BT/BiocatalysisOLD BT/Cell Systems Engineerin

    Hydrocarbon Synthesis via Photoenzymatic Decarboxylation of Carboxylic Acids

    No full text
    A recently discovered photodecarboxylase from Chlorella variabilis NC64A ( CvFAP) bears the promise for the efficient and selective synthesis of hydrocarbons from carboxylic acids. CvFAP, however, exhibits a clear preference for long-chain fatty acids thereby limiting its broad applicability. In this contribution, we demonstrate that the decoy molecule approach enables conversion of a broad range of carboxylic acids by filling up the vacant substrate access channel of the photodecarboxylase. These results not only demonstrate a practical application of a unique, photoactivated enzyme but also pave the way to selective production of short-chain alkanes from waste carboxylic acids under mild reaction conditions.BT/BiocatalysisChemE/Materials for Energy Conversion & StorageChemE/Inorganic Systems EngineeringChemE/Algemee
    corecore