195 research outputs found

    Interface engineering for oxide electronics: tuning electronic properties by atomically controlled growth

    Get PDF
    The main aim of this thesis is to develop a controlled growth with atomic precision for the realization of artificial perovskite structures, to exploit the exceptional physical properties of complex oxide materials such as high-temperature superconductors and conducting interfaces between band insulators

    Transmission Electron Microscopy on Interface Engineered Superconducting Thin Films

    Get PDF
    Transmission electron microscopy is used to evaluate different deposition techniques, which optimize the microstructure and physical properties of superconducting thin films. High-resolution electron microscopy proves that the use of an YBa2Cu2O buffer layer can avoid a variable interface configuration in YBa2Cu3O7 thin films grown on SrTiO3. The growth can also be controlled at an atomic level by using sub-unit cell layer epitaxy, which results in films with high quality and few structural defects. Epitaxial strain in Sr0 85La0 15CuO2 infinite layer thin films influences the critical temperature of these films, as well as the microstructure. Compressive stress is released by a modulated or a twinned microstructure, which eliminates superconductivity. On the other hand, also tensile strain seems to lower the critical temperature of the infinite layer

    Direct patterning of functional interfaces in oxide heterostructures

    Get PDF
    We report on the direct patterning of high-quality structures incorporating the LaAlO3-SrTiO3 interface by an epitaxial-liftoff technique avoiding any reactive ion beam etching. Detailed studies of temperature dependent magnetotransport properties were performed on the patterned heterostructures with variable thickness of the LaAlO3 layer and compared to their unstructured thin film analogues. The results demonstrate the conservation of the high-quality interface properties in the patterned structures enabling future studies of low-dimensional confinement on high mobility interface conductivity as well as interface magnetism

    Electronic switching by metastable polarization states in BiFeO3 thin films

    Get PDF
    We present an approach to control resistive switching in metal-ferroelectric contacts using a radially symmetric electric field. In ferroelectrics with significant polarization along the corresponding field lines, the field above a critical threshold will induce polarization discontinuity, a corresponding nanoscale volume of space charge, and a conducting junction. We demonstrate this principle using nanoscale polarization switching of a conventional (001)-oriented thin film of BiFeO3. Without any optimization, the conducting state created in this regime of resistive switching exhibits local currents of ∼1–10nA, approaching the ∼100nA threshold required for device implementation [J. Jiang et al., Nat. Mater. 17, 49 (2018)]. The corresponding electronic function is that of a volatile resistive switch, which is directly compatible with neuristor functionality that encodes the functioning basis of an axon [M. D. Pickett et al., Nat. Mater. 12, 114 (2013)]. Phase-field modeling further reveals that in the strongly charged local configuration, BiFeO3 locally undergoes a rhombohedral-tetragonal (R-T) phase transition, in part due to substantial piezoelectric expansion of the lattice. The estimated local charge density can be as high as ∼1021cm−3, which would be extremely difficult to achieve by conventional doping approaches without altering other material properties. Therefore, this method for creating stable and reproducible strongly charged ferroelectric junctions enables more systematic studies of their physical properties, such as the possibility of structural and electronic phase transitions, and it can lead to new ferroelectric devices for advanced information functions

    Interface structure of SrTiO3-LaAlO3 at elevated temperatures studied in-situ by synchroton x-rays

    Get PDF
    The atomic interface structure between SrTiO3 and LaAlO3 was studied at elevated temperatures employing in situ surface x-ray diffraction. The results at 473 K indicate that the lattice distorts significantly in two ways. First, the interatomic distances between the cations across the interface become as large as 4.03(2) Å. Second, the TiO6 octahedra at the interface contract their principal axis along the surface normal considerably and the Ti displaces off center. These distortions can be ascribed to the charge inbalance introduced by the change in atomic species across the interface and to a Jahn-Teller effect. The latter distortion suggests the presence of extra electrons at the interface, which is important for understanding the electronic properties of this system
    corecore