2 research outputs found
Histogram- and Diffusion-Based Medical Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for the safety and reliability
of artificial intelligence algorithms, especially in the medical domain. In the
context of the Medical OOD (MOOD) detection challenge 2023, we propose a
pipeline that combines a histogram-based method and a diffusion-based method.
The histogram-based method is designed to accurately detect homogeneous
anomalies in the toy examples of the challenge, such as blobs with constant
intensity values. The diffusion-based method is based on one of the latest
methods for unsupervised anomaly detection, called DDPM-OOD. We explore this
method and propose extensive post-processing steps for pixel-level and
sample-level anomaly detection on brain MRI and abdominal CT data provided by
the challenge. Our results show that the proposed DDPM method is sensitive to
blur and bias field samples, but faces challenges with anatomical deformation,
black slice, and swapped patches. These findings suggest that further research
is needed to improve the performance of DDPM for OOD detection in medical
images.Comment: 9 pages, 5 figures, submission to Medical Out-of-Distribution (MOOD)
challenge at MICCAI 202
Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report
Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (≥0.87/0.90) and gamma pass rates for photon (≥98.1%/99.0%) and proton (≥97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning