10 research outputs found

    A Manipulator-Assisted Multiple UAV Landing System for USV Subject to Disturbance

    Full text link
    Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees

    Design and Verification of a Novel Triphibian Robot

    Full text link
    Multi-modal robots expand their operations from one working medium to another, land to air for example. The majorities of multi-modal robots mainly refer to platforms that operate in two different media. However, for all-terrain tasks, there are seldom research to date in the literature. Generally, locomotions in different working media, i.e. land, water and air, require different propelling actuators, and thus the triphibian system becomes bulky. To overcome this challenge, we proposed a triphibian robot and provide the robot with driving forces to perform all-terrain operations in an efficient way. A morphable mechanism is designed to enable the transition between different motion modes, and specifically a cylindrical body is implemented as the rolling mechanism in land mode. Detailed design principles of different mechanisms and the transition between various locomotion modes are analyzed. Finally, a triphibian robot prototype is fabricated and tested in various working media with both mono-modal and multi-modal functionalities. Experiments have verified our platform, and the results show promising adaptions in future exploration tasks in various working scenarios.Comment: IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION,8 page

    Case Report: Toripalimab: a novel immune checkpoint inhibitor in advanced nasopharyngeal carcinoma and severe immune-related colitis

    Get PDF
    Toripalimab, a specific immune checkpoint inhibitor targeting the programmed death 1 (PD-1) receptor, represents a novel immunotherapeutic approach for advanced nasopharyngeal carcinoma, showing promising curative potential. However, it is not without drawbacks, as some patients experience immune-related adverse events (irAEs) associated with this treatment, and there remains a limited body of related research. Here, we present a case of advanced nasopharyngeal carcinoma in a patient who developed colitis as an irAE attributed to Toripalimab. Subsequent to Toripalimab treatment, the patient achieved complete remission. Notably, the development of colitis was accompanied by inflammatory manifestations evident in colonoscopy and pathology results. Further investigation revealed cytomegalovirus (CMV) infection, detected through immunohistochemistry in 11 colon biopsies. Subsequent treatment with ganciclovir and steroids resulted in symptom relief, and colonoscopy indicated mucosal healing. Our case highlights the association between irColitis induced by Toripalimab and CMV infection. Toripalimab demonstrates remarkable efficacy in treating advanced nasopharyngeal carcinoma, albeit with a notable risk of irAEs, particularly in the form of colitis. The link between symptoms and endoscopic pathology findings in irColitis is noteworthy. Standardized biopsy procedures can effectively confirm the diagnosis of CMV infection. Our findings may provide valuable guidance for managing acute CMV infection and irAEs associated with Toripalimab in the treatment of nasopharyngeal carcinoma in the future

    Study on Low Rank Coal Flotation Enhancement by Carboxylic Acid Collector Prepared from Gutter Oil

    No full text
    Traditional non-polar oil collectors cannot achieve high recovery of low-rank coal because of the presence ofoxygen-containing groups at coal surface. Compared with the traditional diesel collector, the collector containing carboxylic acid functional groups was further synthesized to enhance the flotation of low rank coal based on the alcoholysis of waste oil into biodiesel. The mechanism of collector promoting flotation was further analyzed by infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, X-ray photoelectron spectroscopy and contact angle measurement. Carboxylic acid collector, 0# diesel oil and biodiesel were used to carry out flotation tests on a low-level extremely difficult coal sample. The results showed that the carboxylic acid collector had the best flotation effect on clean coal. Compared with diesel collector, the yield of clean coal increased by 14.63%, and the ash content decreased by 12.06%

    Vehicle Safety Enhancement System: Sensing and Communication

    No full text
    With the substantial increase of vehicles on road, driving safety and transportation efficiency have become increasingly concerned focus from drivers, passengers, and governments. Wireless networks constructed by vehicles and infrastructures provide abundant information to share for the sake of both enhanced safety and network efficiency. This paper presents the systematic research to enhance the vehicle safety by wireless communication, in the aspects of information acquisition through vehicle sensing, vehicle-to-vehicle (V2V) routing protocol for the highly dynamic vehicle network, vehicle-to-infrastructure (V2I) routing protocol for a tradeoff in real-time performance and load balance, and hardware implementation of V2V system with on-road test. Simulations and experimental result validate the feasibility of the algorithms and communication system

    Associations of Maternal rs1801131 Genotype in <i>MTHFR</i> and Serum Folate and Vitamin B<sub>12</sub> with Gestational Diabetes Mellitus in Chinese Pregnant Women

    No full text
    Circumstantial evidence links one-carbon metabolism (OCM) related nutrients, such as folate and vitamin B12, with gestational diabetes mellitus (GDM). However, few studies have evaluated the combined effects of these nutrients with OCM related gene polymorphisms on GDM. This study investigated whether OCM related genetic variants modified the associations of folate and B12 with GDM. Logistic regression was used to estimate odds ratios (ORs) for OCM related nutrients and single nucleotide polymorphisms (SNPs) in genes encoding main OCM related enzymes (MTHFR, MTR, and MTRR) on GDM. Higher folate concentrations were associated with increased GDM risk (OR: 1.59; 95% CI: 1.22, 2.13). However, higher B12 concentrations were associated with reduced GDM risk (OR: 0.76; 95% CI: 0.65, 0.92). Pregnancies with MTHFR rs1801131 G alleles had a significantly lower risk of GDM than pregnancies with T alleles (OR: 0.65; 95% CI: 0.47, 0.91) under the dominant model. The genotype-stratified analysis revealed the association between folate and GDM (OR: 1.66, 95% CI: 1.20, 2.30) or B12 and GDM (OR: 0.80, 95% CI: 0.65, 0.98) was more evident in pregnancies with TT genotype. Higher folate and lower B12 are associated with GDM. Pregnancies with MTHFR rs1801131 TT genotype are more susceptible to OCM nutrient-related GDM
    corecore